allycat / 2b_process_graph_phase2.py
niloydebbarma's picture
Upload 50 files
a7d2416 verified
"""
Phase 2: Community Detection using Leiden Algorithm
Loads graph-data-initial.json, runs community detection, saves graph-data-phase-2.json
"""
import json
import logging
import os
import time
from pathlib import Path
from typing import Dict, Any
from collections import defaultdict
import networkx as nx
import igraph as ig
import leidenalg
import traceback
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class GraphBuilderPhase2:
"""Phase 2: Detect communities using graph algorithms (NetworkX + Leiden)"""
def __init__(self):
"""Initialize Phase 2 processor"""
self.graph_data = None
self.nx_graph = None
self.community_result = None
self.community_stats = None
self.centrality_metrics = None
# Configuration from environment or defaults
self.min_community_size = int(os.getenv("GRAPH_MIN_COMMUNITY_SIZE", "5"))
self.leiden_resolution = float(os.getenv("GRAPH_LEIDEN_RESOLUTION", "1.0"))
self.leiden_iterations = int(os.getenv("GRAPH_LEIDEN_ITERATIONS", "-1")) # -1 = until convergence
self.leiden_seed = int(os.getenv("GRAPH_LEIDEN_SEED", "42"))
logger.info("βœ… Phase 2 Initialized: Community Detection")
logger.info(f" - Min Community Size: {self.min_community_size}")
logger.info(f" - Leiden Resolution: {self.leiden_resolution}")
# STEP 1: Load Graph Data from Phase 1
def load_graph_data(self, input_path: str = None) -> bool:
"""Load graph data from the specified JSON file."""
if input_path is None:
input_path = "workspace/graph_data/graph-data-initial.json"
logger.info(f"Loading graph data from {input_path}...")
try:
input_file = Path(input_path)
if not input_file.exists():
logger.error(f"❌ Input file not found: {input_path}")
logger.warning(" Please run Phase 1 (2b_process_graph_phase1.py) to generate the graph data.")
return False
with open(input_file, 'r', encoding='utf-8') as f:
self.graph_data = json.load(f)
node_count = len(self.graph_data.get("nodes", []))
rel_count = len(self.graph_data.get("relationships", []))
logger.info(f" - Found {node_count} nodes and {rel_count} relationships")
if node_count == 0:
logger.error("❌ Graph data is empty. Cannot proceed.")
return False
return True
except Exception as e:
logger.error(f"❌ Error loading graph data: {e}")
return False
# STEP 2: Build NetworkX Graph
def _build_networkx_graph(self) -> nx.Graph:
"""Convert graph_data JSON to NetworkX graph for analysis"""
logger.info("Building NetworkX graph from JSON data...")
G = nx.Graph()
# Add nodes with attributes
for node in self.graph_data["nodes"]:
node_id = node["id"]
properties = node.get("properties", {})
G.add_node(
node_id,
name=properties.get("name", ""),
type=node.get("labels", ["Unknown"])[0],
description=properties.get("content", ""),
source=properties.get("source", ""),
confidence=properties.get("confidence", 0.0)
)
# Add edges with attributes
for rel in self.graph_data["relationships"]:
start_node = rel.get("startNode")
end_node = rel.get("endNode")
# Only add edge if both nodes exist
if start_node in G.nodes() and end_node in G.nodes():
G.add_edge(
start_node,
end_node,
type=rel.get("type", "RELATED_TO"),
evidence=rel.get("evidence", ""),
confidence=rel.get("confidence", 0.0)
)
logger.info(f"βœ… Built NetworkX graph: {G.number_of_nodes()} nodes, {G.number_of_edges()} edges")
# Log basic graph statistics
if G.number_of_nodes() > 0:
density = nx.density(G)
logger.info(f"πŸ“Š Graph density: {density:.4f}")
if G.number_of_edges() > 0:
avg_degree = sum(dict(G.degree()).values()) / G.number_of_nodes()
logger.info(f"πŸ“Š Average degree: {avg_degree:.2f}")
return G
# STEP 3: Convert to igraph for Leiden
def _convert_to_igraph(self, G: nx.Graph) -> ig.Graph:
"""Convert NetworkX graph to igraph for Leiden algorithm"""
logger.info("πŸ”„ Converting to igraph format for Leiden algorithm...")
# Create mapping from node IDs to indices
node_list = list(G.nodes())
node_to_idx = {node: idx for idx, node in enumerate(node_list)}
# Create edge list with indices
edges = [(node_to_idx[u], node_to_idx[v]) for u, v in G.edges()]
# Create igraph
ig_graph = ig.Graph(n=len(node_list), edges=edges, directed=False)
# Add node attributes
ig_graph.vs["name"] = [G.nodes[node].get("name", "") for node in node_list]
ig_graph.vs["node_id"] = node_list
logger.info(f"βœ… Converted to igraph: {ig_graph.vcount()} vertices, {ig_graph.ecount()} edges")
return ig_graph
# STEP 4: Run Leiden Algorithm
def _run_leiden_algorithm(self, ig_graph: ig.Graph) -> Dict[str, Any]:
"""Run Leiden algorithm for community detection"""
logger.info("πŸ” Running Leiden community detection algorithm...")
logger.info(f"Parameters: resolution={self.leiden_resolution}, iterations={self.leiden_iterations}, seed={self.leiden_seed}")
start_time = time.time()
try:
# Run Leiden algorithm
partition = leidenalg.find_partition(
ig_graph,
leidenalg.ModularityVertexPartition,
n_iterations=self.leiden_iterations,
seed=self.leiden_seed
)
# Extract community assignments
community_assignments = {}
for idx, community_id in enumerate(partition.membership):
node_id = ig_graph.vs[idx]["node_id"]
community_assignments[node_id] = community_id
# Calculate statistics
num_communities = len(set(partition.membership))
modularity = partition.modularity
elapsed = time.time() - start_time
logger.info(f"βœ… Leiden algorithm completed in {elapsed:.2f}s")
logger.info(f"Detected {num_communities} communities")
logger.info(f"Modularity score: {modularity:.4f}")
return {
"assignments": community_assignments,
"num_communities": num_communities,
"modularity": modularity,
"algorithm": "Leiden",
"execution_time": elapsed
}
except Exception as e:
logger.error(f"❌ Leiden algorithm failed: {e}")
raise e
# STEP 5: Calculate Community Statistics
def _calculate_community_stats(self, G: nx.Graph, community_assignments: Dict[str, int]) -> Dict[int, Dict]:
"""Calculate statistics for each community"""
logger.info("Calculating community statistics...")
# Group nodes by community
communities = defaultdict(list)
for node_id, comm_id in community_assignments.items():
communities[comm_id].append(node_id)
# Calculate stats for each community
stats = {}
for comm_id, node_ids in communities.items():
# Skip very small communities if configured
if len(node_ids) < self.min_community_size:
logger.debug(f"Skipping small community {comm_id} with {len(node_ids)} members")
continue
subgraph = G.subgraph(node_ids)
stats[comm_id] = {
"member_count": len(node_ids),
"internal_edges": subgraph.number_of_edges(),
"density": nx.density(subgraph) if len(node_ids) > 1 else 0.0,
"avg_degree": sum(dict(subgraph.degree()).values()) / len(node_ids) if len(node_ids) > 0 else 0.0,
"member_ids": node_ids[:20] # Store top 20 for summary generation
}
logger.info(f"Calculated statistics for {len(stats)} communities (filtered by min_size={self.min_community_size})")
# Log top 5 largest communities
sorted_communities = sorted(stats.items(), key=lambda x: x[1]["member_count"], reverse=True)
logger.info("Top 5 largest communities:")
for comm_id, stat in sorted_communities[:5]:
logger.info(f" Community {comm_id}: {stat['member_count']} members, {stat['internal_edges']} edges, density={stat['density']:.3f}")
return stats
# STEP 6: Calculate Centrality Metrics
def _calculate_centrality_metrics(self, G: nx.Graph) -> Dict[str, Dict]:
"""Calculate centrality metrics for all nodes"""
logger.info("Calculating node centrality metrics...")
start_time = time.time()
# Degree centrality (fast, always calculate)
degree_centrality = nx.degree_centrality(G)
# Betweenness centrality (expensive, only for smaller graphs)
if G.number_of_nodes() < 5000:
logger.info(" Calculating betweenness centrality...")
betweenness_centrality = nx.betweenness_centrality(G, k=min(100, G.number_of_nodes()))
else:
logger.info(" Skipping betweenness centrality (graph too large)")
betweenness_centrality = {node: 0.0 for node in G.nodes()}
# Closeness centrality (expensive, only for smaller graphs)
if G.number_of_nodes() < 5000:
logger.info("Calculating closeness centrality...")
closeness_centrality = nx.closeness_centrality(G)
else:
logger.info(" Skipping closeness centrality (graph too large)")
closeness_centrality = {node: 0.0 for node in G.nodes()}
# Combine metrics
centrality_metrics = {}
for node in G.nodes():
centrality_metrics[node] = {
"degree": G.degree(node),
"degree_centrality": degree_centrality.get(node, 0.0),
"betweenness_centrality": betweenness_centrality.get(node, 0.0),
"closeness_centrality": closeness_centrality.get(node, 0.0)
}
elapsed = time.time() - start_time
logger.info(f"βœ… Calculated centrality for {len(centrality_metrics)} nodes in {elapsed:.2f}s")
return centrality_metrics
# STEP 7: Add Community Data to Nodes
def _add_community_data_to_nodes(self, community_assignments: Dict[str, int], centrality_metrics: Dict[str, Dict]) -> None:
"""Add community_id and centrality metrics to node properties"""
logger.info("Adding community assignments and centrality to nodes...")
nodes_updated = 0
for node in self.graph_data["nodes"]:
node_id = node["id"]
# Add community_id
if node_id in community_assignments:
node["properties"]["community_id"] = f"comm-{community_assignments[node_id]}"
nodes_updated += 1
# Add centrality metrics
if node_id in centrality_metrics:
metrics = centrality_metrics[node_id]
node["properties"]["degree"] = metrics["degree"]
node["properties"]["degree_centrality"] = round(metrics["degree_centrality"], 4)
node["properties"]["betweenness_centrality"] = round(metrics["betweenness_centrality"], 4)
node["properties"]["closeness_centrality"] = round(metrics["closeness_centrality"], 4)
logger.info(f"βœ… Updated {nodes_updated} nodes with community and centrality data")
# STEP 8: Main Processing Entry Point
def run_community_detection(self, input_path: str = None, output_path: str = None) -> bool:
"""Main entry point for Phase 2"""
if output_path is None:
output_path = "workspace/graph_data/graph-data-phase-2.json"
logger.info("πŸš€ Starting Phase 2: Community Detection")
logger.info("=" * 60)
start_time = time.time()
# Step 1: Load Phase 1 output
if not self.load_graph_data(input_path):
return False
# Step 2: Build NetworkX graph
self.nx_graph = self._build_networkx_graph()
if self.nx_graph.number_of_nodes() == 0:
logger.error("❌ Cannot run community detection on empty graph")
return False
# Step 3: Convert to igraph
ig_graph = self._convert_to_igraph(self.nx_graph)
# Step 4: Run Leiden algorithm
self.community_result = self._run_leiden_algorithm(ig_graph)
# Step 5: Calculate community statistics
self.community_stats = self._calculate_community_stats(
self.nx_graph,
self.community_result["assignments"]
)
# Step 6: Calculate centrality metrics
self.centrality_metrics = self._calculate_centrality_metrics(self.nx_graph)
# Step 7: Add community data to nodes
self._add_community_data_to_nodes(
self.community_result["assignments"],
self.centrality_metrics
)
# Step 8: Update metadata
self.graph_data["metadata"]["phase"] = "community_detection"
self.graph_data["metadata"]["community_detection"] = {
"algorithm": "Leiden",
"num_communities": self.community_result["num_communities"],
"modularity_score": round(self.community_result["modularity"], 4),
"execution_time_seconds": round(self.community_result["execution_time"], 2),
"min_community_size": self.min_community_size,
"resolution": self.leiden_resolution
}
# Step 9: Add community statistics to output
self.graph_data["community_stats"] = self.community_stats
# Step 10: Save Phase 2 output
if self._save_phase2_output(output_path):
elapsed = time.time() - start_time
logger.info("=" * 60)
logger.info(f"βœ… Phase 2 completed successfully in {elapsed:.2f}s")
logger.info(f"Final stats:")
logger.info(f" - Communities detected: {self.community_result['num_communities']}")
logger.info(f" - Modularity score: {self.community_result['modularity']:.4f}")
logger.info(f" - Nodes with community assignments: {len(self.community_result['assignments'])}")
logger.info(f" - Output saved to: {output_path}")
return True
else:
return False
# STEP 9: Save Phase 2 Output
def _save_phase2_output(self, output_path: str) -> bool:
"""Save graph-data-phase-2.json"""
try:
# Ensure output directory exists
output_dir = Path(output_path).parent
output_dir.mkdir(parents=True, exist_ok=True)
# Save Phase 2 output
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(self.graph_data, f, indent=2, ensure_ascii=False)
# Calculate file size
output_size = os.path.getsize(output_path)
output_size_mb = output_size / (1024 * 1024)
logger.info(f"Saved Phase 2 output: {output_path} ({output_size_mb:.2f} MB)")
return True
except Exception as e:
logger.error(f"❌ Error saving Phase 2 output: {e}")
return False
# STEP 10: Main Entry Point
def main():
"""Main function to run Phase 2: Community Detection"""
logger.info("πŸš€ GraphRAG Phase 2: Community Detection")
logger.info(" Input: graph-data-initial.json (from Phase 1)")
logger.info(" Output: graph-data-phase-2.json")
logger.info("")
try:
# Initialize Phase 2 processor
processor = GraphBuilderPhase2()
# Run community detection
success = processor.run_community_detection()
if success:
logger.info("")
logger.info("βœ… Phase 2 completed successfully!")
logger.info("Next step: Run Phase 3 (2b_process_graph_phase3.py) for community summarization")
return 0
else:
logger.error("")
logger.error("❌ Phase 2 failed")
logger.error(" Please check the logs above for details")
return 1
except Exception as e:
logger.error(f"❌ Phase 2 pipeline failed: {e}")
logger.error(traceback.format_exc())
return 1
if __name__ == "__main__":
exit(main())