Spaces:
Runtime error
Runtime error
File size: 17,671 Bytes
a7d2416 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
"""
Phase 2: Community Detection using Leiden Algorithm
Loads graph-data-initial.json, runs community detection, saves graph-data-phase-2.json
"""
import json
import logging
import os
import time
from pathlib import Path
from typing import Dict, Any
from collections import defaultdict
import networkx as nx
import igraph as ig
import leidenalg
import traceback
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class GraphBuilderPhase2:
"""Phase 2: Detect communities using graph algorithms (NetworkX + Leiden)"""
def __init__(self):
"""Initialize Phase 2 processor"""
self.graph_data = None
self.nx_graph = None
self.community_result = None
self.community_stats = None
self.centrality_metrics = None
# Configuration from environment or defaults
self.min_community_size = int(os.getenv("GRAPH_MIN_COMMUNITY_SIZE", "5"))
self.leiden_resolution = float(os.getenv("GRAPH_LEIDEN_RESOLUTION", "1.0"))
self.leiden_iterations = int(os.getenv("GRAPH_LEIDEN_ITERATIONS", "-1")) # -1 = until convergence
self.leiden_seed = int(os.getenv("GRAPH_LEIDEN_SEED", "42"))
logger.info("β
Phase 2 Initialized: Community Detection")
logger.info(f" - Min Community Size: {self.min_community_size}")
logger.info(f" - Leiden Resolution: {self.leiden_resolution}")
# STEP 1: Load Graph Data from Phase 1
def load_graph_data(self, input_path: str = None) -> bool:
"""Load graph data from the specified JSON file."""
if input_path is None:
input_path = "workspace/graph_data/graph-data-initial.json"
logger.info(f"Loading graph data from {input_path}...")
try:
input_file = Path(input_path)
if not input_file.exists():
logger.error(f"β Input file not found: {input_path}")
logger.warning(" Please run Phase 1 (2b_process_graph_phase1.py) to generate the graph data.")
return False
with open(input_file, 'r', encoding='utf-8') as f:
self.graph_data = json.load(f)
node_count = len(self.graph_data.get("nodes", []))
rel_count = len(self.graph_data.get("relationships", []))
logger.info(f" - Found {node_count} nodes and {rel_count} relationships")
if node_count == 0:
logger.error("β Graph data is empty. Cannot proceed.")
return False
return True
except Exception as e:
logger.error(f"β Error loading graph data: {e}")
return False
# STEP 2: Build NetworkX Graph
def _build_networkx_graph(self) -> nx.Graph:
"""Convert graph_data JSON to NetworkX graph for analysis"""
logger.info("Building NetworkX graph from JSON data...")
G = nx.Graph()
# Add nodes with attributes
for node in self.graph_data["nodes"]:
node_id = node["id"]
properties = node.get("properties", {})
G.add_node(
node_id,
name=properties.get("name", ""),
type=node.get("labels", ["Unknown"])[0],
description=properties.get("content", ""),
source=properties.get("source", ""),
confidence=properties.get("confidence", 0.0)
)
# Add edges with attributes
for rel in self.graph_data["relationships"]:
start_node = rel.get("startNode")
end_node = rel.get("endNode")
# Only add edge if both nodes exist
if start_node in G.nodes() and end_node in G.nodes():
G.add_edge(
start_node,
end_node,
type=rel.get("type", "RELATED_TO"),
evidence=rel.get("evidence", ""),
confidence=rel.get("confidence", 0.0)
)
logger.info(f"β
Built NetworkX graph: {G.number_of_nodes()} nodes, {G.number_of_edges()} edges")
# Log basic graph statistics
if G.number_of_nodes() > 0:
density = nx.density(G)
logger.info(f"π Graph density: {density:.4f}")
if G.number_of_edges() > 0:
avg_degree = sum(dict(G.degree()).values()) / G.number_of_nodes()
logger.info(f"π Average degree: {avg_degree:.2f}")
return G
# STEP 3: Convert to igraph for Leiden
def _convert_to_igraph(self, G: nx.Graph) -> ig.Graph:
"""Convert NetworkX graph to igraph for Leiden algorithm"""
logger.info("π Converting to igraph format for Leiden algorithm...")
# Create mapping from node IDs to indices
node_list = list(G.nodes())
node_to_idx = {node: idx for idx, node in enumerate(node_list)}
# Create edge list with indices
edges = [(node_to_idx[u], node_to_idx[v]) for u, v in G.edges()]
# Create igraph
ig_graph = ig.Graph(n=len(node_list), edges=edges, directed=False)
# Add node attributes
ig_graph.vs["name"] = [G.nodes[node].get("name", "") for node in node_list]
ig_graph.vs["node_id"] = node_list
logger.info(f"β
Converted to igraph: {ig_graph.vcount()} vertices, {ig_graph.ecount()} edges")
return ig_graph
# STEP 4: Run Leiden Algorithm
def _run_leiden_algorithm(self, ig_graph: ig.Graph) -> Dict[str, Any]:
"""Run Leiden algorithm for community detection"""
logger.info("π Running Leiden community detection algorithm...")
logger.info(f"Parameters: resolution={self.leiden_resolution}, iterations={self.leiden_iterations}, seed={self.leiden_seed}")
start_time = time.time()
try:
# Run Leiden algorithm
partition = leidenalg.find_partition(
ig_graph,
leidenalg.ModularityVertexPartition,
n_iterations=self.leiden_iterations,
seed=self.leiden_seed
)
# Extract community assignments
community_assignments = {}
for idx, community_id in enumerate(partition.membership):
node_id = ig_graph.vs[idx]["node_id"]
community_assignments[node_id] = community_id
# Calculate statistics
num_communities = len(set(partition.membership))
modularity = partition.modularity
elapsed = time.time() - start_time
logger.info(f"β
Leiden algorithm completed in {elapsed:.2f}s")
logger.info(f"Detected {num_communities} communities")
logger.info(f"Modularity score: {modularity:.4f}")
return {
"assignments": community_assignments,
"num_communities": num_communities,
"modularity": modularity,
"algorithm": "Leiden",
"execution_time": elapsed
}
except Exception as e:
logger.error(f"β Leiden algorithm failed: {e}")
raise e
# STEP 5: Calculate Community Statistics
def _calculate_community_stats(self, G: nx.Graph, community_assignments: Dict[str, int]) -> Dict[int, Dict]:
"""Calculate statistics for each community"""
logger.info("Calculating community statistics...")
# Group nodes by community
communities = defaultdict(list)
for node_id, comm_id in community_assignments.items():
communities[comm_id].append(node_id)
# Calculate stats for each community
stats = {}
for comm_id, node_ids in communities.items():
# Skip very small communities if configured
if len(node_ids) < self.min_community_size:
logger.debug(f"Skipping small community {comm_id} with {len(node_ids)} members")
continue
subgraph = G.subgraph(node_ids)
stats[comm_id] = {
"member_count": len(node_ids),
"internal_edges": subgraph.number_of_edges(),
"density": nx.density(subgraph) if len(node_ids) > 1 else 0.0,
"avg_degree": sum(dict(subgraph.degree()).values()) / len(node_ids) if len(node_ids) > 0 else 0.0,
"member_ids": node_ids[:20] # Store top 20 for summary generation
}
logger.info(f"Calculated statistics for {len(stats)} communities (filtered by min_size={self.min_community_size})")
# Log top 5 largest communities
sorted_communities = sorted(stats.items(), key=lambda x: x[1]["member_count"], reverse=True)
logger.info("Top 5 largest communities:")
for comm_id, stat in sorted_communities[:5]:
logger.info(f" Community {comm_id}: {stat['member_count']} members, {stat['internal_edges']} edges, density={stat['density']:.3f}")
return stats
# STEP 6: Calculate Centrality Metrics
def _calculate_centrality_metrics(self, G: nx.Graph) -> Dict[str, Dict]:
"""Calculate centrality metrics for all nodes"""
logger.info("Calculating node centrality metrics...")
start_time = time.time()
# Degree centrality (fast, always calculate)
degree_centrality = nx.degree_centrality(G)
# Betweenness centrality (expensive, only for smaller graphs)
if G.number_of_nodes() < 5000:
logger.info(" Calculating betweenness centrality...")
betweenness_centrality = nx.betweenness_centrality(G, k=min(100, G.number_of_nodes()))
else:
logger.info(" Skipping betweenness centrality (graph too large)")
betweenness_centrality = {node: 0.0 for node in G.nodes()}
# Closeness centrality (expensive, only for smaller graphs)
if G.number_of_nodes() < 5000:
logger.info("Calculating closeness centrality...")
closeness_centrality = nx.closeness_centrality(G)
else:
logger.info(" Skipping closeness centrality (graph too large)")
closeness_centrality = {node: 0.0 for node in G.nodes()}
# Combine metrics
centrality_metrics = {}
for node in G.nodes():
centrality_metrics[node] = {
"degree": G.degree(node),
"degree_centrality": degree_centrality.get(node, 0.0),
"betweenness_centrality": betweenness_centrality.get(node, 0.0),
"closeness_centrality": closeness_centrality.get(node, 0.0)
}
elapsed = time.time() - start_time
logger.info(f"β
Calculated centrality for {len(centrality_metrics)} nodes in {elapsed:.2f}s")
return centrality_metrics
# STEP 7: Add Community Data to Nodes
def _add_community_data_to_nodes(self, community_assignments: Dict[str, int], centrality_metrics: Dict[str, Dict]) -> None:
"""Add community_id and centrality metrics to node properties"""
logger.info("Adding community assignments and centrality to nodes...")
nodes_updated = 0
for node in self.graph_data["nodes"]:
node_id = node["id"]
# Add community_id
if node_id in community_assignments:
node["properties"]["community_id"] = f"comm-{community_assignments[node_id]}"
nodes_updated += 1
# Add centrality metrics
if node_id in centrality_metrics:
metrics = centrality_metrics[node_id]
node["properties"]["degree"] = metrics["degree"]
node["properties"]["degree_centrality"] = round(metrics["degree_centrality"], 4)
node["properties"]["betweenness_centrality"] = round(metrics["betweenness_centrality"], 4)
node["properties"]["closeness_centrality"] = round(metrics["closeness_centrality"], 4)
logger.info(f"β
Updated {nodes_updated} nodes with community and centrality data")
# STEP 8: Main Processing Entry Point
def run_community_detection(self, input_path: str = None, output_path: str = None) -> bool:
"""Main entry point for Phase 2"""
if output_path is None:
output_path = "workspace/graph_data/graph-data-phase-2.json"
logger.info("π Starting Phase 2: Community Detection")
logger.info("=" * 60)
start_time = time.time()
# Step 1: Load Phase 1 output
if not self.load_graph_data(input_path):
return False
# Step 2: Build NetworkX graph
self.nx_graph = self._build_networkx_graph()
if self.nx_graph.number_of_nodes() == 0:
logger.error("β Cannot run community detection on empty graph")
return False
# Step 3: Convert to igraph
ig_graph = self._convert_to_igraph(self.nx_graph)
# Step 4: Run Leiden algorithm
self.community_result = self._run_leiden_algorithm(ig_graph)
# Step 5: Calculate community statistics
self.community_stats = self._calculate_community_stats(
self.nx_graph,
self.community_result["assignments"]
)
# Step 6: Calculate centrality metrics
self.centrality_metrics = self._calculate_centrality_metrics(self.nx_graph)
# Step 7: Add community data to nodes
self._add_community_data_to_nodes(
self.community_result["assignments"],
self.centrality_metrics
)
# Step 8: Update metadata
self.graph_data["metadata"]["phase"] = "community_detection"
self.graph_data["metadata"]["community_detection"] = {
"algorithm": "Leiden",
"num_communities": self.community_result["num_communities"],
"modularity_score": round(self.community_result["modularity"], 4),
"execution_time_seconds": round(self.community_result["execution_time"], 2),
"min_community_size": self.min_community_size,
"resolution": self.leiden_resolution
}
# Step 9: Add community statistics to output
self.graph_data["community_stats"] = self.community_stats
# Step 10: Save Phase 2 output
if self._save_phase2_output(output_path):
elapsed = time.time() - start_time
logger.info("=" * 60)
logger.info(f"β
Phase 2 completed successfully in {elapsed:.2f}s")
logger.info(f"Final stats:")
logger.info(f" - Communities detected: {self.community_result['num_communities']}")
logger.info(f" - Modularity score: {self.community_result['modularity']:.4f}")
logger.info(f" - Nodes with community assignments: {len(self.community_result['assignments'])}")
logger.info(f" - Output saved to: {output_path}")
return True
else:
return False
# STEP 9: Save Phase 2 Output
def _save_phase2_output(self, output_path: str) -> bool:
"""Save graph-data-phase-2.json"""
try:
# Ensure output directory exists
output_dir = Path(output_path).parent
output_dir.mkdir(parents=True, exist_ok=True)
# Save Phase 2 output
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(self.graph_data, f, indent=2, ensure_ascii=False)
# Calculate file size
output_size = os.path.getsize(output_path)
output_size_mb = output_size / (1024 * 1024)
logger.info(f"Saved Phase 2 output: {output_path} ({output_size_mb:.2f} MB)")
return True
except Exception as e:
logger.error(f"β Error saving Phase 2 output: {e}")
return False
# STEP 10: Main Entry Point
def main():
"""Main function to run Phase 2: Community Detection"""
logger.info("π GraphRAG Phase 2: Community Detection")
logger.info(" Input: graph-data-initial.json (from Phase 1)")
logger.info(" Output: graph-data-phase-2.json")
logger.info("")
try:
# Initialize Phase 2 processor
processor = GraphBuilderPhase2()
# Run community detection
success = processor.run_community_detection()
if success:
logger.info("")
logger.info("β
Phase 2 completed successfully!")
logger.info("Next step: Run Phase 3 (2b_process_graph_phase3.py) for community summarization")
return 0
else:
logger.error("")
logger.error("β Phase 2 failed")
logger.error(" Please check the logs above for details")
return 1
except Exception as e:
logger.error(f"β Phase 2 pipeline failed: {e}")
logger.error(traceback.format_exc())
return 1
if __name__ == "__main__":
exit(main())
|