Spaces:
Sleeping
A newer version of the Gradio SDK is available:
6.1.0
Configuration Options
This document discusses the various configuration options available for Aurora AI.
Overview
Aurora AI provides a comprehensive configuration framework supporting multi-tenancy, enterprise-grade security, and extensible integration patterns. The system employs a hierarchical configuration model with environment-specific overrides, schema validation, and runtime hot-reloading capabilities.
Core Configuration Architecture
Configuration Hierarchy
Aurora AI implements a cascading configuration system with the following precedence order:
- Runtime overrides - Programmatic configuration via API
- Environment variables - System-level configuration with
AURORA_prefix - Configuration files - YAML/JSON/TOML format files
- Default values - Embedded fallback configuration
Configuration File Structure
aurora:
engine:
inference_backend: "transformers"
model_path: "/models/aurora-v3"
device_map: "auto"
quantization:
enabled: true
bits: 4
scheme: "gptq"
runtime:
max_concurrent_requests: 128
request_timeout_ms: 30000
graceful_shutdown_timeout: 60
Model Configuration
Inference Engine Parameters
model_path: Filesystem path or Hugging Face model identifierdevice_map: Hardware allocation strategy (auto,balanced,sequential, or custom JSON mapping)torch_dtype: Precision mode (float32,float16,bfloat16,int8,int4)attention_implementation: Mechanism selection (flash_attention_2,sdpa,eager)rope_scaling: Rotary Position Embedding interpolation configurationkv_cache_dtype: Key-value cache quantization type
Quantization Strategies
Aurora AI supports multiple quantization backends:
- GPTQ: 4-bit grouped quantization with calibration datasets
- AWQ: Activation-aware weight quantization
- GGUF: CPU-optimized quantization format
- BitsAndBytes: Dynamic 8-bit and 4-bit quantization
API Configuration
REST API Settings
api:
host: "0.0.0.0"
port: 8080
workers: 4
uvicorn:
loop: "uvloop"
http: "httptools"
log_level: "info"
cors:
enabled: true
origins: ["https://*.example.com"]
allow_credentials: true
rate_limiting:
enabled: true
requests_per_minute: 60
burst_size: 10
Authentication & Authorization
- API Key Authentication: Header-based (
X-API-Key) or query parameter - OAuth 2.0: Support for Authorization Code and Client Credentials flows
- JWT Tokens: RS256/ES256 signature verification with JWKS endpoints
- mTLS: Mutual TLS authentication for service-to-service communication
Integration Patterns
Vector Database Integration
Aurora AI integrates with enterprise vector stores:
vector_store:
provider: "pinecone" # or "weaviate", "qdrant", "milvus", "chromadb"
connection:
api_key: "${PINECONE_API_KEY}"
environment: "us-west1-gcp"
index_name: "aurora-embeddings"
embedding:
model: "text-embedding-3-large"
dimensions: 3072
batch_size: 100
Message Queue Integration
Asynchronous processing via message brokers:
- RabbitMQ: AMQP 0-9-1 protocol with exchange routing
- Apache Kafka: High-throughput event streaming with consumer groups
- Redis Streams: Lightweight pub/sub with consumer group support
- AWS SQS/SNS: Cloud-native queue and notification services
Observability Stack
observability:
metrics:
provider: "prometheus"
port: 9090
path: "/metrics"
tracing:
provider: "opentelemetry"
exporter: "otlp"
endpoint: "http://jaeger:4317"
sampling_rate: 0.1
logging:
level: "INFO"
format: "json"
output: "stdout"
Memory Management
Cache Configuration
cache:
inference_cache:
enabled: true
backend: "redis"
ttl_seconds: 3600
max_size_mb: 2048
prompt_cache:
enabled: true
strategy: "semantic_hash"
similarity_threshold: 0.95
Context Window Management
- Sliding Window: Maintains fixed-size context with FIFO eviction
- Semantic Compression: Entropy-based summarization for long contexts
- Hierarchical Attention: Multi-level context representation
- External Memory: Vector store-backed infinite context
Distributed Deployment
Kubernetes Configuration
deployment:
replicas: 3
strategy: "RollingUpdate"
resources:
requests:
cpu: "4000m"
memory: "16Gi"
nvidia.com/gpu: "1"
limits:
cpu: "8000m"
memory: "32Gi"
nvidia.com/gpu: "1"
autoscaling:
enabled: true
min_replicas: 2
max_replicas: 10
target_cpu_utilization: 70
Service Mesh Integration
Aurora AI supports Istio, Linkerd, and Consul service mesh architectures with:
- Traffic management: Weighted routing, circuit breaking, retries
- Security: mTLS encryption, authorization policies
- Observability: Distributed tracing, metrics aggregation
Advanced Features
Custom Plugin System
plugins:
enabled: true
plugin_path: "/opt/aurora/plugins"
plugins:
- name: "custom_tokenizer"
module: "aurora.plugins.tokenizers"
config:
vocab_size: 65536
- name: "retrieval_augmentation"
module: "aurora.plugins.rag"
config:
top_k: 5
rerank: true
Multi-Model Orchestration
Configure model routing and ensemble strategies:
- Load-based routing: Distribute requests based on model server load
- A/B testing: Traffic splitting for model evaluation
- Cascade patterns: Fallback to alternative models on failure
- Ensemble voting: Aggregate predictions from multiple models
Security Hardening
- Secrets management: Integration with HashiCorp Vault, AWS Secrets Manager
- Network policies: Zero-trust networking with pod security policies
- Input sanitization: Prompt injection and jailbreak detection
- Output filtering: PII redaction and content safety validation
- Audit logging: Immutable logs with cryptographic verification