Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| from util import imread, imsave, copy_skimage_data | |
| import torch | |
| from PIL import Image, ImageDraw | |
| import numpy as np | |
| from os.path import join | |
| def torch_compile(*args, **kwargs): | |
| def decorator(func): | |
| return func | |
| return decorator | |
| torch.compile = torch_compile # temporary workaround | |
| default_model = 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c' | |
| default_score_thresh = .9 | |
| default_nms_thresh = np.round(np.pi / 10, 4) | |
| default_samples = 128 | |
| default_order = 5 | |
| examples_dir = 'examples' | |
| copy_skimage_data(examples_dir) | |
| examples = [ | |
| [join(examples_dir, 'bbbc039_test_00014.png'), 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c', False, default_score_thresh, False, | |
| default_nms_thresh, True, 64, True], | |
| [join(examples_dir, 'coins.png'), 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c', False, default_score_thresh, False, | |
| default_nms_thresh, True, 64, True], | |
| [join(examples_dir, 'cell.png'), 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c', False, default_score_thresh, False, | |
| default_nms_thresh, True, 64, True], | |
| ] | |
| def predict( | |
| filename, model=None, | |
| enable_score_threshold=False, score_threshold=.9, | |
| enable_nms_threshold=False, nms_threshold=0.3141592653589793, | |
| enable_samples=False, samples=128, | |
| use_label_channels=False, | |
| enable_order=False, order=5, | |
| device=None, | |
| ): | |
| from cpn import CpnInterface | |
| from prep import multi_norm | |
| from celldetection import label_cmap, to_h5, data, __version__ | |
| global default_model | |
| assert isinstance(filename, str) | |
| if device is None: | |
| if torch.cuda.device_count(): | |
| device = 'cuda' | |
| else: | |
| device = 'cpu' | |
| meta = dict( | |
| cd_version=__version__, | |
| filename=str(filename), | |
| model=model, | |
| device=device, | |
| use_label_channels=use_label_channels, | |
| enable_score_threshold=enable_score_threshold, | |
| score_threshold=float(score_threshold), | |
| enable_order=enable_order, | |
| order=order, | |
| enable_nms_threshold=enable_nms_threshold, | |
| nms_threshold=float(nms_threshold), | |
| ) | |
| print(meta, flush=True) | |
| raw = img = imread(filename) | |
| print('Image:', img.dtype, img.shape, (img.min(), img.max()), flush=True) | |
| if model is None or len(str(model)) <= 0: | |
| model = default_model | |
| img = multi_norm(img, 'cstm-mix') # TODO | |
| kw = {} | |
| if enable_score_threshold: | |
| kw['score_thresh'] = score_threshold | |
| if enable_nms_threshold: | |
| kw['nms_thresh'] = nms_threshold | |
| if enable_order: | |
| kw['order'] = order | |
| if enable_samples: | |
| kw['samples'] = samples | |
| m = CpnInterface(model.strip(), device=device, **kw) | |
| y = m(img, reduce_labels=not use_label_channels) | |
| dst_h5 = '.'.join(filename.split('.')[:-1]) + '.h5' | |
| to_h5( | |
| dst_h5, inputs=img, **y, | |
| attributes=dict(inputs=meta) | |
| ) | |
| labels = y['labels'] | |
| vis_labels = label_cmap(labels) | |
| dst_csv = '.'.join(filename.split('.')[:-1]) + '.csv' | |
| data.labels2property_table( | |
| labels, | |
| "label", "area", "feret_diameter_max", "bbox", "centroid", "convex_area", | |
| "eccentricity", "equivalent_diameter", | |
| "extent", "filled_area", "major_axis_length", | |
| "minor_axis_length", "orientation", "perimeter", | |
| "solidity", "mean_intensity", "max_intensity", "min_intensity", | |
| intensity_image=raw | |
| ).to_csv(dst_csv) | |
| return vis_labels, img, dst_h5, dst_csv | |
| with gr.Blocks(title='Cell Segmentation with Contour Proposal Networks') as app: | |
| with gr.Row(): | |
| gr.Markdown("<center><strong><font size='7'>" | |
| "Cell Segmentation with Contour Proposal Networks 🤗</font></strong></center>") | |
| with gr.Row(): | |
| with gr.Column(): | |
| img = gr.components.Image(label="Upload Input Image", type="filepath", interactive=True, | |
| value=examples[0][0]) | |
| with gr.Column(): | |
| model_name = gr.components.Textbox(label='Model Name', value=default_model, max_lines=1) | |
| with gr.Row(): | |
| score_thresh_ck = gr.components.Checkbox(label="Use custom Score Threshold", value=False) | |
| score_thresh = gr.components.Slider(minimum=0, maximum=1, label="Score Threshold", | |
| value=default_score_thresh) | |
| with gr.Row(): | |
| nms_thresh_ck = gr.components.Checkbox(label="Use custom NMS Threshold", value=False) | |
| nms_thresh = gr.components.Slider(minimum=0, maximum=1, label="NMS Threshold", value=default_nms_thresh) | |
| # with gr.Row(): | |
| # # The range of this would need to be model dependent | |
| # order_ck = gr.components.Checkbox(label="Use custom Order", value=False) | |
| # order = gr.components.Slider(minimum=0, maximum=1, label="Order", value=default_order) | |
| with gr.Row(): | |
| samples_ck = gr.components.Checkbox(label="Use custom Sample Points", value=False) | |
| samples = gr.components.Slider(minimum=8, maximum=256, label="Sample Points", value=default_samples) | |
| with gr.Row(): | |
| channels = gr.components.Checkbox(label="Allow overlapping objects", value=True) | |
| with gr.Row(): | |
| clr = gr.Button('Reset') | |
| btn = gr.Button('Run') | |
| with gr.Row(): | |
| with gr.Column(): | |
| out_img = gr.Image(label="Processed Image") | |
| with gr.Column(): | |
| out_vis = gr.Image(label="Label Image (random colors, transparent overlap)") | |
| with gr.Row(): | |
| out_h5 = gr.File(label="Download Results as HDF5 File") | |
| out_csv = gr.File(label="Download Properties as CSV File") | |
| with gr.Row(): | |
| gr.Examples( | |
| fn=predict, | |
| examples=examples, | |
| inputs=[img, model_name, score_thresh_ck, score_thresh, nms_thresh_ck, nms_thresh, samples_ck, samples, | |
| channels], | |
| outputs=[out_vis, out_img, out_h5, out_csv], | |
| cache_examples=True, | |
| batch=False | |
| ) | |
| btn.click( | |
| predict, | |
| inputs=[img, model_name, score_thresh_ck, score_thresh, nms_thresh_ck, nms_thresh, samples_ck, samples, | |
| channels], | |
| outputs=[out_vis, out_img, out_h5, out_csv] | |
| ) | |
| clr.click( | |
| lambda: ( | |
| None, default_score_thresh, default_nms_thresh, False, False, None, None, None, False, default_samples), | |
| inputs=[], | |
| outputs=[img, score_thresh, nms_thresh, score_thresh_ck, nms_thresh_ck, out_img, out_h5, out_vis, samples_ck, | |
| samples] | |
| ) | |
| app.launch() | |