Spaces:
Running
on
Zero
Running
on
Zero
General Update
Browse files- app.py +143 -29
- cpn.py +6 -2
- examples/bbbc039_test_00014.png +0 -0
- util.py +9 -9
app.py
CHANGED
|
@@ -1,24 +1,53 @@
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
-
from util import imread, imsave,
|
| 4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
def torch_compile(*args, **kwargs):
|
| 7 |
def decorator(func):
|
| 8 |
return func
|
|
|
|
| 9 |
return decorator
|
| 10 |
|
|
|
|
| 11 |
torch.compile = torch_compile # temporary workaround
|
| 12 |
|
| 13 |
default_model = 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
@spaces.GPU
|
| 17 |
-
def predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
from cpn import CpnInterface
|
| 19 |
from prep import multi_norm
|
| 20 |
-
from celldetection import label_cmap
|
| 21 |
-
|
| 22 |
global default_model
|
| 23 |
assert isinstance(filename, str)
|
| 24 |
|
|
@@ -27,40 +56,125 @@ def predict(filename, model=None, device=None, reduce_labels=True):
|
|
| 27 |
device = 'cuda'
|
| 28 |
else:
|
| 29 |
device = 'cpu'
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
| 33 |
model=model,
|
| 34 |
device=device,
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
img = imread(filename)
|
| 39 |
print('Image:', img.dtype, img.shape, (img.min(), img.max()), flush=True)
|
| 40 |
if model is None or len(str(model)) <= 0:
|
| 41 |
model = default_model
|
| 42 |
|
| 43 |
img = multi_norm(img, 'cstm-mix') # TODO
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
|
|
|
| 50 |
vis_labels = label_cmap(labels)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
+
from util import imread, imsave, copy_skimage_data
|
| 4 |
import torch
|
| 5 |
+
from PIL import Image, ImageDraw
|
| 6 |
+
import numpy as np
|
| 7 |
+
from os.path import join
|
| 8 |
+
|
| 9 |
|
| 10 |
def torch_compile(*args, **kwargs):
|
| 11 |
def decorator(func):
|
| 12 |
return func
|
| 13 |
+
|
| 14 |
return decorator
|
| 15 |
|
| 16 |
+
|
| 17 |
torch.compile = torch_compile # temporary workaround
|
| 18 |
|
| 19 |
default_model = 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c'
|
| 20 |
+
default_score_thresh = .9
|
| 21 |
+
default_nms_thresh = np.round(np.pi / 10, 4)
|
| 22 |
+
default_samples = 128
|
| 23 |
+
default_order = 5
|
| 24 |
+
|
| 25 |
+
examples_dir = 'examples'
|
| 26 |
+
copy_skimage_data(examples_dir)
|
| 27 |
+
examples = [
|
| 28 |
+
[join(examples_dir, 'bbbc039_test_00014.png'), 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c', False, default_score_thresh, False,
|
| 29 |
+
default_nms_thresh, True, 64, True],
|
| 30 |
+
[join(examples_dir, 'coins.png'), 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c', False, default_score_thresh, False,
|
| 31 |
+
default_nms_thresh, True, 64, True],
|
| 32 |
+
[join(examples_dir, 'cell.png'), 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c', False, default_score_thresh, False,
|
| 33 |
+
default_nms_thresh, True, 64, True],
|
| 34 |
+
]
|
| 35 |
|
| 36 |
|
| 37 |
@spaces.GPU
|
| 38 |
+
def predict(
|
| 39 |
+
filename, model=None,
|
| 40 |
+
enable_score_threshold=False, score_threshold=.9,
|
| 41 |
+
enable_nms_threshold=False, nms_threshold=0.3141592653589793,
|
| 42 |
+
enable_samples=False, samples=128,
|
| 43 |
+
use_label_channels=False,
|
| 44 |
+
enable_order=False, order=5,
|
| 45 |
+
device=None,
|
| 46 |
+
):
|
| 47 |
from cpn import CpnInterface
|
| 48 |
from prep import multi_norm
|
| 49 |
+
from celldetection import label_cmap, to_h5, data, __version__
|
| 50 |
+
|
| 51 |
global default_model
|
| 52 |
assert isinstance(filename, str)
|
| 53 |
|
|
|
|
| 56 |
device = 'cuda'
|
| 57 |
else:
|
| 58 |
device = 'cpu'
|
| 59 |
+
|
| 60 |
+
meta = dict(
|
| 61 |
+
cd_version=__version__,
|
| 62 |
+
filename=str(filename),
|
| 63 |
model=model,
|
| 64 |
device=device,
|
| 65 |
+
use_label_channels=use_label_channels,
|
| 66 |
+
enable_score_threshold=enable_score_threshold,
|
| 67 |
+
score_threshold=float(score_threshold),
|
| 68 |
+
enable_order=enable_order,
|
| 69 |
+
order=order,
|
| 70 |
+
enable_nms_threshold=enable_nms_threshold,
|
| 71 |
+
nms_threshold=float(nms_threshold),
|
| 72 |
+
)
|
| 73 |
+
print(meta, flush=True)
|
| 74 |
|
| 75 |
+
raw = img = imread(filename)
|
| 76 |
print('Image:', img.dtype, img.shape, (img.min(), img.max()), flush=True)
|
| 77 |
if model is None or len(str(model)) <= 0:
|
| 78 |
model = default_model
|
| 79 |
|
| 80 |
img = multi_norm(img, 'cstm-mix') # TODO
|
| 81 |
|
| 82 |
+
kw = {}
|
| 83 |
+
if enable_score_threshold:
|
| 84 |
+
kw['score_thresh'] = score_threshold
|
| 85 |
+
if enable_nms_threshold:
|
| 86 |
+
kw['nms_thresh'] = nms_threshold
|
| 87 |
+
if enable_order:
|
| 88 |
+
kw['order'] = order
|
| 89 |
+
if enable_samples:
|
| 90 |
+
kw['samples'] = samples
|
| 91 |
+
m = CpnInterface(model.strip(), device=device, **kw)
|
| 92 |
+
y = m(img, reduce_labels=not use_label_channels)
|
| 93 |
|
| 94 |
+
dst_h5 = '.'.join(filename.split('.')[:-1]) + '.h5'
|
| 95 |
+
to_h5(
|
| 96 |
+
dst_h5, inputs=img, **y,
|
| 97 |
+
attributes=dict(inputs=meta)
|
| 98 |
+
)
|
| 99 |
|
| 100 |
+
labels = y['labels']
|
| 101 |
vis_labels = label_cmap(labels)
|
| 102 |
+
|
| 103 |
+
dst_csv = '.'.join(filename.split('.')[:-1]) + '.csv'
|
| 104 |
+
data.labels2property_table(
|
| 105 |
+
labels,
|
| 106 |
+
"label", "area", "feret_diameter_max", "bbox", "centroid", "convex_area",
|
| 107 |
+
"eccentricity", "equivalent_diameter",
|
| 108 |
+
"extent", "filled_area", "major_axis_length",
|
| 109 |
+
"minor_axis_length", "orientation", "perimeter",
|
| 110 |
+
"solidity", "mean_intensity", "max_intensity", "min_intensity",
|
| 111 |
+
intensity_image=raw
|
| 112 |
+
).to_csv(dst_csv)
|
| 113 |
+
|
| 114 |
+
return vis_labels, img, dst_h5, dst_csv
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
with gr.Blocks(title='Cell Segmentation with Contour Proposal Networks') as app:
|
| 118 |
+
with gr.Row():
|
| 119 |
+
gr.Markdown("<center><strong><font size='7'>"
|
| 120 |
+
"Cell Segmentation with Contour Proposal Networks 🤗</font></strong></center>")
|
| 121 |
+
|
| 122 |
+
with gr.Row():
|
| 123 |
+
with gr.Column():
|
| 124 |
+
img = gr.components.Image(label="Upload Input Image", type="filepath", interactive=True,
|
| 125 |
+
value=examples[0][0])
|
| 126 |
+
with gr.Column():
|
| 127 |
+
model_name = gr.components.Textbox(label='Model Name', value=default_model, max_lines=1)
|
| 128 |
+
with gr.Row():
|
| 129 |
+
score_thresh_ck = gr.components.Checkbox(label="Use custom Score Threshold", value=False)
|
| 130 |
+
score_thresh = gr.components.Slider(minimum=0, maximum=1, label="Score Threshold",
|
| 131 |
+
value=default_score_thresh)
|
| 132 |
+
with gr.Row():
|
| 133 |
+
nms_thresh_ck = gr.components.Checkbox(label="Use custom NMS Threshold", value=False)
|
| 134 |
+
nms_thresh = gr.components.Slider(minimum=0, maximum=1, label="NMS Threshold", value=default_nms_thresh)
|
| 135 |
+
# with gr.Row():
|
| 136 |
+
# # The range of this would need to be model dependent
|
| 137 |
+
# order_ck = gr.components.Checkbox(label="Use custom Order", value=False)
|
| 138 |
+
# order = gr.components.Slider(minimum=0, maximum=1, label="Order", value=default_order)
|
| 139 |
+
with gr.Row():
|
| 140 |
+
samples_ck = gr.components.Checkbox(label="Use custom Sample Points", value=False)
|
| 141 |
+
samples = gr.components.Slider(minimum=8, maximum=256, label="Sample Points", value=default_samples)
|
| 142 |
+
with gr.Row():
|
| 143 |
+
channels = gr.components.Checkbox(label="Allow overlapping objects", value=True)
|
| 144 |
+
with gr.Row():
|
| 145 |
+
clr = gr.Button('Reset')
|
| 146 |
+
btn = gr.Button('Run')
|
| 147 |
+
with gr.Row():
|
| 148 |
+
with gr.Column():
|
| 149 |
+
out_img = gr.Image(label="Processed Image")
|
| 150 |
+
with gr.Column():
|
| 151 |
+
out_vis = gr.Image(label="Label Image (random colors, transparent overlap)")
|
| 152 |
+
with gr.Row():
|
| 153 |
+
out_h5 = gr.File(label="Download Results as HDF5 File")
|
| 154 |
+
out_csv = gr.File(label="Download Properties as CSV File")
|
| 155 |
+
|
| 156 |
+
with gr.Row():
|
| 157 |
+
gr.Examples(
|
| 158 |
+
fn=predict,
|
| 159 |
+
examples=examples,
|
| 160 |
+
inputs=[img, model_name, score_thresh_ck, score_thresh, nms_thresh_ck, nms_thresh, samples_ck, samples,
|
| 161 |
+
channels],
|
| 162 |
+
outputs=[out_vis, out_img, out_h5, out_csv],
|
| 163 |
+
cache_examples=True,
|
| 164 |
+
batch=False
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
btn.click(
|
| 168 |
+
predict,
|
| 169 |
+
inputs=[img, model_name, score_thresh_ck, score_thresh, nms_thresh_ck, nms_thresh, samples_ck, samples,
|
| 170 |
+
channels],
|
| 171 |
+
outputs=[out_vis, out_img, out_h5, out_csv]
|
| 172 |
+
)
|
| 173 |
+
clr.click(
|
| 174 |
+
lambda: (
|
| 175 |
+
None, default_score_thresh, default_nms_thresh, False, False, None, None, None, False, default_samples),
|
| 176 |
+
inputs=[],
|
| 177 |
+
outputs=[img, score_thresh, nms_thresh, score_thresh_ck, nms_thresh_ck, out_img, out_h5, out_vis, samples_ck,
|
| 178 |
+
samples]
|
| 179 |
+
)
|
| 180 |
+
app.launch()
|
cpn.py
CHANGED
|
@@ -32,10 +32,14 @@ def contours2labels(contours, size, overlap=False, max_iter=999):
|
|
| 32 |
|
| 33 |
|
| 34 |
class CpnInterface:
|
| 35 |
-
def __init__(self, model, device=None):
|
| 36 |
self.device = ('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
| 38 |
self.model.eval()
|
|
|
|
| 39 |
self.tile_size = 1664
|
| 40 |
self.overlap = 384
|
| 41 |
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
class CpnInterface:
|
| 35 |
+
def __init__(self, model, device=None, **kwargs):
|
| 36 |
self.device = ('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
|
| 37 |
+
model = cd.resolve_model(model, **kwargs)
|
| 38 |
+
if not isinstance(model, cd.models.LitCpn):
|
| 39 |
+
model = cd.models.LitCpn(model)
|
| 40 |
+
self.model = model.to(device)
|
| 41 |
self.model.eval()
|
| 42 |
+
self.model.requires_grad_(False)
|
| 43 |
self.tile_size = 1664
|
| 44 |
self.overlap = 384
|
| 45 |
|
examples/bbbc039_test_00014.png
ADDED
|
util.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
from imageio.v2 import imread as _imread
|
|
|
|
| 2 |
import tifffile as tif
|
| 3 |
|
| 4 |
-
__all__ = ['imread', 'imsave', '
|
| 5 |
|
| 6 |
|
| 7 |
def imread(filename):
|
|
@@ -14,14 +15,13 @@ def imsave(filename, img, compression="zlib"):
|
|
| 14 |
tif.imwrite(filename, img, compression=compression)
|
| 15 |
|
| 16 |
|
| 17 |
-
def
|
| 18 |
from skimage import data
|
|
|
|
| 19 |
from os.path import dirname, join, isfile
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
examples.append([f, default_model])
|
| 26 |
-
if len(examples):
|
| 27 |
-
return examples
|
|
|
|
| 1 |
from imageio.v2 import imread as _imread
|
| 2 |
+
from shutil import copy2
|
| 3 |
import tifffile as tif
|
| 4 |
|
| 5 |
+
__all__ = ['imread', 'imsave', 'copy_skimage_data']
|
| 6 |
|
| 7 |
|
| 8 |
def imread(filename):
|
|
|
|
| 15 |
tif.imwrite(filename, img, compression=compression)
|
| 16 |
|
| 17 |
|
| 18 |
+
def copy_skimage_data(dst='examples'):
|
| 19 |
from skimage import data
|
| 20 |
+
from os import makedirs
|
| 21 |
from os.path import dirname, join, isfile
|
| 22 |
+
from glob import glob
|
| 23 |
|
| 24 |
+
makedirs(dst, exist_ok=True)
|
| 25 |
+
|
| 26 |
+
for f in glob(join(dirname(data.__file__), '*.png')):
|
| 27 |
+
copy2(f, dst)
|
|
|
|
|
|
|
|
|