metadata
base_model: prajjwal1/bert-tiny
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:277277
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Tall man being stopped by an officer.
sentences:
- The man is short.
- There is a tall man.
- >-
Male in brown leather jacket and tight black slacks, looking down at his
phone
- source_sentence: Man relaxing on a bench at the bus stop.
sentences:
- The man stood next to the bench.
- The man relaxes on a bench.
- A dog running outside.
- source_sentence: Police officer with riot shield stands in front of crowd.
sentences:
- A police officer teaches two children something.
- The kid is at the beach.
- A police officer stands in front of a crowd.
- source_sentence: >-
A woman in a red shirt and blue jeans is walking outside while a man in a
khaki jacket is right behind her.
sentences:
- A man and a woman are walking outside.
- A woman is outside.
- A man in an army jacket is following a woman in a pink dress.
- source_sentence: >-
A waitress with a pink shirt and black pants walking through a restaurant
carrying bowls of soup.
sentences:
- Nobody has pants
- A person with pants
- a young kid jumps into the water
co2_eq_emissions:
emissions: 1.9590621986924506
energy_consumed: 0.005040010596015587
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.029
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on prajjwal1/bert-tiny
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.7526013757467193
name: Pearson Cosine
- type: spearman_cosine
value: 0.7614153421868329
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7622035611835871
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7597498090089608
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7632410201154781
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7614153421868329
name: Spearman Euclidean
- type: pearson_dot
value: 0.7526013835604672
name: Pearson Dot
- type: spearman_dot
value: 0.7614153421868329
name: Spearman Dot
- type: pearson_max
value: 0.7632410201154781
name: Pearson Max
- type: spearman_max
value: 0.7614153421868329
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.69132863091579
name: Pearson Cosine
- type: spearman_cosine
value: 0.6775246001958918
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6993315331718462
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6760860789893309
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7005700491110102
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6775246001958918
name: Spearman Euclidean
- type: pearson_dot
value: 0.6913286275793098
name: Pearson Dot
- type: spearman_dot
value: 0.6775246001958918
name: Spearman Dot
- type: pearson_max
value: 0.7005700491110102
name: Pearson Max
- type: spearman_max
value: 0.6775246001958918
name: Spearman Max
SentenceTransformer based on prajjwal1/bert-tiny
This is a sentence-transformers model finetuned from prajjwal1/bert-tiny. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: prajjwal1/bert-tiny
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 256 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 128, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 128, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence-transformers-testing/all-nli-bert-tiny-dense")
# Run inference
sentences = [
'A waitress with a pink shirt and black pants walking through a restaurant carrying bowls of soup.',
'A person with pants',
'Nobody has pants',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 256]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.7526 |
| spearman_cosine | 0.7614 |
| pearson_manhattan | 0.7622 |
| spearman_manhattan | 0.7597 |
| pearson_euclidean | 0.7632 |
| spearman_euclidean | 0.7614 |
| pearson_dot | 0.7526 |
| spearman_dot | 0.7614 |
| pearson_max | 0.7632 |
| spearman_max | 0.7614 |
Semantic Similarity
- Dataset:
sts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.6913 |
| spearman_cosine | 0.6775 |
| pearson_manhattan | 0.6993 |
| spearman_manhattan | 0.6761 |
| pearson_euclidean | 0.7006 |
| spearman_euclidean | 0.6775 |
| pearson_dot | 0.6913 |
| spearman_dot | 0.6775 |
| pearson_max | 0.7006 |
| spearman_max | 0.6775 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 277,277 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 5 tokens
- mean: 15.84 tokens
- max: 64 tokens
- min: 4 tokens
- mean: 9.45 tokens
- max: 23 tokens
- min: 4 tokens
- mean: 10.23 tokens
- max: 28 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.A person is at a diner, ordering an omelette.Children smiling and waving at cameraThere are children presentThe kids are frowningA boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.The boy skates down the sidewalk. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 5,875 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 17.85 tokens
- max: 63 tokens
- min: 4 tokens
- mean: 9.68 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.36 tokens
- max: 26 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.Two woman are holding packages.The men are fighting outside a deli.Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.Two kids in numbered jerseys wash their hands.Two kids in jackets walk to school.A man selling donuts to a customer during a world exhibition event held in the city of AngelesA man selling donuts to a customer.A woman drinks her coffee in a small cafe. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 256per_device_eval_batch_size: 256learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1bf16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 256per_device_eval_batch_size: 256per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|
| 0.0923 | 100 | 3.4021 | 2.1678 | 0.7247 | - |
| 0.1845 | 200 | 2.3398 | 1.7482 | 0.7480 | - |
| 0.2768 | 300 | 2.0893 | 1.6365 | 0.7537 | - |
| 0.3690 | 400 | 2.0035 | 1.5782 | 0.7552 | - |
| 0.4613 | 500 | 1.9023 | 1.5376 | 0.7587 | - |
| 0.5535 | 600 | 1.8647 | 1.5059 | 0.7597 | - |
| 0.6458 | 700 | 1.8511 | 1.4836 | 0.7605 | - |
| 0.7380 | 800 | 1.8094 | 1.4698 | 0.7613 | - |
| 0.8303 | 900 | 1.8338 | 1.4593 | 0.7609 | - |
| 0.9225 | 1000 | 1.7951 | 1.4553 | 0.7614 | - |
| 1.0 | 1084 | - | - | - | 0.6775 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.005 kWh
- Carbon Emitted: 0.002 kg of CO2
- Hours Used: 0.029 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.1.0.dev0
- Transformers: 4.43.4
- PyTorch: 2.5.0.dev20240807+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}