SetFit with flax-sentence-embeddings/st-codesearch-distilroberta-base
This is a SetFit model trained on the hojzas/proj8-label2 dataset that can be used for Text Classification. This SetFit model uses flax-sentence-embeddings/st-codesearch-distilroberta-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
| Label |
Examples |
| 0 |
- 'def first_with_given_key(iterable, key=lambda x: x):\n keys_in_list = []\n for it in iterable:\n if key(it) not in keys_in_list:\n keys_in_list.append(key(it))\n yield it'
- 'def first_with_given_key(iterable, key=lambda value: value):\n it = iter(iterable)\n saved_keys = []\n while True:\n try:\n value = next(it)\n if key(value) not in saved_keys:\n saved_keys.append(key(value))\n yield value\n except StopIteration:\n break'
- 'def first_with_given_key(iterable, key=None):\n if key is None:\n key = lambda x: x\n item_list = []\n key_set = set()\n for item in iterable:\n generated_item = key(item)\n if generated_item not in item_list:\n item_list.append(generated_item)\n yield item'
|
| 1 |
- 'def first_with_given_key(lst, key = lambda x: x):\n res = set()\n for i in lst:\n if repr(key(i)) not in res:\n res.add(repr(key(i)))\n yield i'
- 'def first_with_given_key(iterable, key=repr):\n set_of_keys = set()\n lambda_key = (lambda x: key(x))\n for item in iterable:\n key = lambda_key(item)\n try:\n key_for_set = hash(key)\n except TypeError:\n key_for_set = repr(key)\n if key_for_set in set_of_keys:\n continue\n set_of_keys.add(key_for_set)\n yield item'
- 'def first_with_given_key(iterable, key=None):\n if key is None:\n key = identity\n appeared_keys = set()\n for item in iterable:\n generated_key = key(item)\n if not generated_key.hash:\n generated_key = repr(generated_key)\n if generated_key not in appeared_keys:\n appeared_keys.add(generated_key)\n yield item'
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("hojzas/setfit-proj8-code")
preds = model("def first_with_given_key(iterable, key=lambda x: x):\n keys=[]\n for i in iterable:\n if key(i) not in keys:\n yield i\n keys.append(key(i))")
Training Details
Training Set Metrics
| Training set |
Min |
Median |
Max |
| Word count |
43 |
90.28 |
119 |
| Label |
Training Sample Count |
| 0 |
20 |
| 1 |
5 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch |
Step |
Training Loss |
Validation Loss |
| 0.0159 |
1 |
0.3347 |
- |
| 0.7937 |
50 |
0.0035 |
- |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Carbon Emitted: 0.000 kg of CO2
- Hours Used: 0.002 hours
Training Hardware
- On Cloud: No
- GPU Model: No GPU used
- CPU Model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
- RAM Size: 251.49 GB
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.36.1
- PyTorch: 2.1.2+cu121
- Datasets: 2.14.7
- Tokenizers: 0.15.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}