dataset-stats / finepdfs-stats.py
davanstrien's picture
davanstrien HF Staff
Make card more generic for different language scopes
22b66f4
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "polars>=1.31.0",
# "huggingface-hub",
# "datasets",
# "ascii-graph",
# ]
# ///
"""
Analyze educational quality trends across CommonCrawl dumps using Polars streaming.
Answers: "Is the web getting more educational over time?"
Demonstrates Polars HF Hub integration - process 50M+ docs without downloading 300GB+.
Example usage:
# Analyze English PDFs (default)
uv run finepdfs-stats.py
# Analyze all 70+ languages
uv run finepdfs-stats.py --all-languages
# Quick test
uv run finepdfs-stats.py --limit 10000 --show-plan
# Save results to HF Hub
uv run finepdfs-stats.py --output-repo username/finepdfs-temporal-stats
# Run on HF Jobs
hf jobs uv run \\
-s HF_TOKEN \\
-e HF_XET_HIGH_PERFORMANCE=1 \\
https://huggingface.co/datasets/uv-scripts/dataset-stats/raw/main/finepdfs-stats.py \\
-- --output-repo username/stats
"""
import argparse
import logging
import os
import sys
import time
from pathlib import Path
import polars as pl
from ascii_graph import Pyasciigraph
from datasets import Dataset
from huggingface_hub import HfApi, create_repo, list_repo_tree, login
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# Common language+script codes for finepdfs-edu
COMMON_LANGUAGES = {
"eng_Latn": "English (Latin script)",
"fra_Latn": "French (Latin script)",
"deu_Latn": "German (Latin script)",
"spa_Latn": "Spanish (Latin script)",
"por_Latn": "Portuguese (Latin script)",
"ita_Latn": "Italian (Latin script)",
"nld_Latn": "Dutch (Latin script)",
"pol_Latn": "Polish (Latin script)",
"rus_Cyrl": "Russian (Cyrillic script)",
"zho_Hans": "Chinese (Simplified)",
"zho_Hant": "Chinese (Traditional)",
"jpn_Jpan": "Japanese",
"kor_Hang": "Korean",
"ara_Arab": "Arabic",
"hin_Deva": "Hindi (Devanagari)",
}
def list_available_languages(dataset_id: str) -> list[str]:
"""List available language subsets in the dataset."""
try:
tree = list_repo_tree(dataset_id, path_in_repo="data", repo_type="dataset")
languages = [
item.path.replace("data/", "")
for item in tree
if item.path.startswith("data/")
and "/" not in item.path.replace("data/", "")
]
return sorted(languages)
except Exception as e:
logger.warning(f"Could not list languages: {e}")
return list(COMMON_LANGUAGES.keys())
def compute_temporal_stats(df: pl.LazyFrame, output_path: Path) -> pl.DataFrame:
"""Single scan: compute stats grouped by dump for temporal analysis."""
query = df.group_by("dump").agg(
pl.len().alias("doc_count"),
pl.col("token_count").sum().alias("total_tokens"),
pl.col("fw_edu_scores").list.mean().mean().alias("avg_edu_score"),
(pl.col("fw_edu_scores").list.mean() >= 3).sum().alias("high_edu_count"),
)
query.sink_parquet(output_path, engine="streaming")
return pl.read_parquet(output_path)
def compute_global_stats(temporal: pl.DataFrame) -> pl.DataFrame:
"""Compute global stats from temporal breakdown."""
total = temporal["doc_count"].sum()
return pl.DataFrame(
{
"total_docs": [total],
"total_tokens": [temporal["total_tokens"].sum()],
"avg_edu_score": [
(temporal["avg_edu_score"] * temporal["doc_count"]).sum() / total
],
"high_edu_rate": [temporal["high_edu_count"].sum() / total],
"num_dumps": [len(temporal)],
}
)
def format_temporal_stats(temporal: pl.DataFrame) -> pl.DataFrame:
"""Format temporal stats with high_edu_rate, sorted chronologically."""
return (
temporal.with_columns(
(pl.col("high_edu_count") / pl.col("doc_count")).alias("high_edu_rate")
)
.select(["dump", "doc_count", "avg_edu_score", "high_edu_rate"])
.sort(
"dump"
) # Chronological order (CC-MAIN-2017-xx comes before CC-MAIN-2024-xx)
)
def create_ascii_charts(temporal_stats: pl.DataFrame) -> str:
"""Create ASCII bar charts showing temporal trends."""
# Extract year from dump name (CC-MAIN-2024-42 -> 2024)
# Group by year and average the values for cleaner display
yearly = (
temporal_stats.with_columns(
pl.col("dump").str.extract(r"CC-MAIN-(\d{4})", 1).alias("year")
)
.group_by("year")
.agg(
pl.col("doc_count").sum(),
pl.col("avg_edu_score").mean(),
pl.col("high_edu_rate").mean(),
)
.sort("year")
)
lines = []
# High edu rate chart (more dramatic differences)
data_rate = [
(row["year"], row["high_edu_rate"] * 100)
for row in yearly.iter_rows(named=True)
]
graph = Pyasciigraph(line_length=60, float_format="{0:.1f}%")
lines.extend(graph.graph("High Educational Content (edu >= 3)", data_rate))
lines.append("")
# Avg edu score chart
data_score = [
(row["year"], row["avg_edu_score"]) for row in yearly.iter_rows(named=True)
]
graph2 = Pyasciigraph(line_length=60, float_format="{0:.2f}")
lines.extend(graph2.graph("Average Educational Score", data_score))
return "\n".join(lines)
def create_readme(
args,
global_stats: pl.DataFrame,
temporal_stats: pl.DataFrame,
scan_time: float,
ascii_charts: str,
) -> str:
"""Create README content for the stats dataset."""
stats = global_stats.to_dicts()[0]
total_docs = stats.get("total_docs", 0)
docs_per_sec = total_docs / scan_time if scan_time > 0 else 0
# Get first and last year averages for trend (more representative than single dumps)
yearly = (
temporal_stats.with_columns(
pl.col("dump").str.extract(r"CC-MAIN-(\d{4})", 1).alias("year")
)
.group_by("year")
.agg(
pl.col("doc_count").sum(),
pl.col("avg_edu_score").mean(),
pl.col("high_edu_rate").mean(),
)
.sort("year")
)
first_year = yearly.head(1).to_dicts()[0]
last_year = yearly.tail(1).to_dicts()[0]
scope = (
"all languages"
if args.all_languages
else COMMON_LANGUAGES.get(args.lang, args.lang)
)
return f"""---
tags:
- uv-script
- statistics
- polars
- finepdfs-edu
- temporal-analysis
license: odc-by
configs:
- config_name: global_stats
data_files: global_stats/train-*.parquet
- config_name: temporal_stats
data_files: temporal_stats/train-*.parquet
default_viewer_config: temporal_stats
---
# Is the Web Getting More Educational?
Temporal analysis of educational quality in **{scope}** across {stats.get("num_dumps", 0)} CommonCrawl dumps.
## Trend
```
{ascii_charts}
```
## Key Finding
| Year | Avg Edu Score | High Edu Rate |
|------|---------------|---------------|
| {first_year["year"]} | {first_year["avg_edu_score"]:.2f} | {first_year["high_edu_rate"] * 100:.1f}% |
| {last_year["year"]} | {last_year["avg_edu_score"]:.2f} | {last_year["high_edu_rate"] * 100:.1f}% |
## Performance
- **{total_docs:,} documents** processed in **{scan_time:.0f} seconds**
- **{docs_per_sec:,.0f} docs/sec** using Polars streaming
- Single scan, no full dataset download required
## Summary
| Metric | Value |
|--------|-------|
| Scope | {scope} |
| Total Documents | {total_docs:,} |
| Total Tokens | {stats.get("total_tokens", 0):,} |
| Avg Edu Score | {stats.get("avg_edu_score", 0):.3f} |
| High Edu Rate | {stats.get("high_edu_rate", 0) * 100:.1f}% |
| CommonCrawl Dumps | {stats.get("num_dumps", 0)} |
## Files
- `global_stats` - Overall summary
- `temporal_stats` - Per-dump breakdown (sorted chronologically)
## Reproduce
```bash
uv run https://huggingface.co/datasets/uv-scripts/dataset-stats/raw/main/finepdfs-stats.py \\
{"--all-languages" if args.all_languages else f"--lang {args.lang}"} --output-repo your-username/stats
```
## Source
- **Dataset**: [{args.source_dataset}](https://huggingface.co/datasets/{args.source_dataset})
- **Script**: [uv-scripts/dataset-stats](https://huggingface.co/datasets/uv-scripts/dataset-stats)
"""
def main():
parser = argparse.ArgumentParser(
description="Analyze educational quality trends across CommonCrawl dumps",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=__doc__,
)
parser.add_argument(
"--source-dataset",
type=str,
default="HuggingFaceFW/finepdfs-edu",
help="Source dataset (default: HuggingFaceFW/finepdfs-edu)",
)
parser.add_argument(
"--lang",
type=str,
default="eng_Latn",
help="Language+script code (default: eng_Latn)",
)
parser.add_argument(
"--all-languages",
action="store_true",
help="Analyze all languages (70+) instead of single language",
)
parser.add_argument(
"--show-plan",
action="store_true",
help="Show Polars query plan (demonstrates optimization)",
)
parser.add_argument(
"--list-languages",
action="store_true",
help="List available languages and exit",
)
parser.add_argument(
"--limit",
type=int,
help="Limit to first N rows (for testing)",
)
parser.add_argument(
"--output-repo",
type=str,
help="HuggingFace dataset repository to upload results",
)
parser.add_argument(
"--output-dir",
type=str,
default="./stats_output",
help="Local directory for output files",
)
parser.add_argument(
"--hf-token",
type=str,
help="HuggingFace API token (or set HF_TOKEN env var)",
)
parser.add_argument(
"--private",
action="store_true",
help="Make the output dataset private",
)
args = parser.parse_args()
# Check for high-performance mode
if os.environ.get("HF_XET_HIGH_PERFORMANCE"):
logger.info("High-performance mode enabled (HF_XET_HIGH_PERFORMANCE=1)")
# List languages mode
if args.list_languages:
print(f"Available language+script codes for {args.source_dataset}:\n")
print("Common languages:")
for code, name in COMMON_LANGUAGES.items():
print(f" {code:12} - {name}")
print("\nFetching full list from HF Hub...")
all_langs = list_available_languages(args.source_dataset)
print(f"\nAll available ({len(all_langs)} total):")
for lang in all_langs[:30]: # Show first 30
name = COMMON_LANGUAGES.get(lang, "")
print(f" {lang:12} {name}")
if len(all_langs) > 30:
print(f" ... and {len(all_langs) - 30} more")
sys.exit(0)
# Build the parquet path
if args.all_languages:
source_path = f"hf://datasets/{args.source_dataset}/data/*/train/*.parquet"
scope_desc = "all languages"
else:
source_path = (
f"hf://datasets/{args.source_dataset}/data/{args.lang}/train/*.parquet"
)
scope_desc = f"{args.lang} ({COMMON_LANGUAGES.get(args.lang, 'unknown')})"
logger.info(f"Scanning: {source_path}")
logger.info(f"Scope: {scope_desc}")
# Create lazy frame - this doesn't load any data yet!
logger.info("Creating lazy query plan...")
df = pl.scan_parquet(source_path)
# Apply limit if specified
if args.limit:
logger.info(f"Limiting to first {args.limit:,} rows")
df = df.head(args.limit)
# Show query plan if requested
if args.show_plan:
# Build a sample query to show the plan
sample_query = df.select(
pl.len(),
pl.col("token_count").sum(),
pl.col("language").n_unique(),
)
print("\nQuery Plan (showing Polars optimization):")
print("=" * 60)
print(sample_query.explain())
print("=" * 60)
print("\nNote: Polars uses projection pushdown - only reads columns needed!")
print("The 'text' column is never loaded, making this very fast.\n")
# Create output directory
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
# Single scan: compute temporal stats
logger.info("Computing temporal stats (single scan)...")
start = time.perf_counter()
temporal_path = output_dir / "temporal_stats.parquet"
temporal_raw = compute_temporal_stats(df, temporal_path)
scan_time = time.perf_counter() - start
logger.info(f"Scan complete in {scan_time:.2f}s - {len(temporal_raw)} dumps")
# Compute stats
global_stats = compute_global_stats(temporal_raw)
temporal_stats = format_temporal_stats(temporal_raw)
# Save
global_stats.write_parquet(output_dir / "global_stats.parquet")
temporal_stats.write_parquet(output_dir / "temporal_stats.parquet")
# Print results
total_docs = global_stats["total_docs"][0]
docs_per_sec = total_docs / scan_time if scan_time > 0 else 0
print("\n" + "=" * 70)
print("IS THE WEB GETTING MORE EDUCATIONAL?")
print("=" * 70)
print(f"\nScope: {scope_desc}")
print(f"Dataset: {args.source_dataset}")
print("\n" + "-" * 70)
print("GLOBAL STATS")
print("-" * 70)
print(global_stats)
print("\n" + "-" * 70)
print(f"TEMPORAL TREND ({len(temporal_stats)} CommonCrawl dumps)")
print("-" * 70)
# Show first 5 and last 5
if len(temporal_stats) > 10:
print("Earliest dumps:")
print(temporal_stats.head(5))
print("\n...")
print("\nLatest dumps:")
print(temporal_stats.tail(5))
else:
print(temporal_stats)
# Create ASCII charts
ascii_charts = create_ascii_charts(temporal_stats)
print("\n" + "-" * 70)
print("TREND VISUALIZATION")
print("-" * 70)
print(ascii_charts)
print("\n" + "-" * 70)
print("PERFORMANCE")
print("-" * 70)
print(f"Scan time: {scan_time:.2f}s")
print(f"Documents: {total_docs:,}")
print(f"Throughput: {docs_per_sec:,.0f} docs/sec")
logger.info(f"Results saved to: {output_dir}")
# Upload to HF Hub if requested
if args.output_repo:
hf_token = args.hf_token or os.environ.get("HF_TOKEN")
if hf_token:
login(token=hf_token)
api = HfApi(token=hf_token)
logger.info(f"Creating/updating dataset repository: {args.output_repo}")
create_repo(
args.output_repo,
repo_type="dataset",
private=args.private,
token=hf_token,
exist_ok=True,
)
# Upload each as a dataset config
configs = [
("global_stats", global_stats),
("temporal_stats", temporal_stats),
]
for config_name, stats_df in configs:
logger.info(f"Uploading {config_name}...")
ds = Dataset.from_polars(stats_df)
ds.push_to_hub(
args.output_repo,
config_name=config_name,
token=hf_token,
private=args.private,
)
time.sleep(1) # Avoid 409 conflicts
# Upload README
readme_content = create_readme(
args, global_stats, temporal_stats, scan_time, ascii_charts
)
api.upload_file(
path_or_fileobj=readme_content.encode(),
path_in_repo="README.md",
repo_id=args.output_repo,
repo_type="dataset",
token=hf_token,
)
dataset_url = f"https://huggingface.co/datasets/{args.output_repo}"
logger.info(f"Dataset uploaded: {dataset_url}")
print(f"\nResults uploaded to: {dataset_url}")
if __name__ == "__main__":
if len(sys.argv) == 1:
print("Is the Web Getting More Educational?")
print("=" * 40)
print("\nAnalyze educational quality trends across CommonCrawl dumps")
print("using Polars streaming - no download needed!\n")
print("Example commands:\n")
print("# Quick test:")
print("uv run finepdfs-stats.py --limit 10000\n")
print("# Analyze English PDFs:")
print("uv run finepdfs-stats.py\n")
print("# Analyze ALL 70+ languages:")
print("uv run finepdfs-stats.py --all-languages\n")
print("# Show query plan (see Polars optimization):")
print("uv run finepdfs-stats.py --show-plan --limit 1000\n")
print("# Save results to HF Hub:")
print("uv run finepdfs-stats.py --output-repo username/temporal-stats\n")
print("# Run on HF Jobs:")
print("hf jobs uv run \\")
print(" -s HF_TOKEN \\")
print(" -e HF_XET_HIGH_PERFORMANCE=1 \\")
print(
" https://huggingface.co/datasets/uv-scripts/dataset-stats/raw/main/finepdfs-stats.py \\"
)
print(" -- --output-repo username/stats")
sys.exit(0)
main()