File size: 17,115 Bytes
7d6ee37
 
 
 
 
 
16270cd
7d6ee37
 
 
16270cd
7d6ee37
16270cd
7d6ee37
8f3bc4f
7d6ee37
 
16270cd
7d6ee37
 
16270cd
 
7d6ee37
16270cd
 
7d6ee37
16270cd
 
7d6ee37
16270cd
7d6ee37
 
 
16270cd
 
7d6ee37
 
 
 
 
 
 
 
 
 
16270cd
7d6ee37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16270cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d6ee37
 
 
16270cd
 
7d6ee37
16270cd
 
7d6ee37
16270cd
 
 
 
7d6ee37
 
 
16270cd
 
 
 
 
 
 
 
 
7d6ee37
16270cd
 
 
7d6ee37
16270cd
7d6ee37
 
16270cd
7d6ee37
16270cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d6ee37
 
 
 
 
16270cd
 
 
7d6ee37
 
 
16270cd
 
7d6ee37
8f3bc4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16270cd
 
 
 
 
 
7d6ee37
 
 
8f3bc4f
7d6ee37
 
 
16270cd
7d6ee37
cd457fc
 
 
 
 
 
7d6ee37
 
16270cd
7d6ee37
22b66f4
7d6ee37
16270cd
7d6ee37
16270cd
 
 
7d6ee37
16270cd
7d6ee37
8f3bc4f
 
 
 
7d6ee37
16270cd
7d6ee37
16270cd
 
22b66f4
7d6ee37
16270cd
7d6ee37
 
 
16270cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d6ee37
 
 
 
 
16270cd
7d6ee37
 
 
 
 
16270cd
7d6ee37
 
 
 
 
 
 
 
16270cd
7d6ee37
 
 
16270cd
 
 
 
 
 
 
 
7d6ee37
16270cd
7d6ee37
 
 
16270cd
 
 
7d6ee37
 
 
 
 
16270cd
7d6ee37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16270cd
7d6ee37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16270cd
 
 
 
 
 
 
 
 
7d6ee37
16270cd
7d6ee37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16270cd
 
7d6ee37
16270cd
 
 
 
 
 
 
 
 
 
7d6ee37
16270cd
7d6ee37
16270cd
 
 
7d6ee37
16270cd
 
 
7d6ee37
16270cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d6ee37
 
 
 
 
 
 
 
 
 
 
f6a4704
 
 
 
 
 
 
 
7d6ee37
16270cd
 
 
 
 
7d6ee37
16270cd
7d6ee37
16270cd
7d6ee37
 
 
 
 
 
16270cd
7d6ee37
16270cd
 
 
 
7d6ee37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16270cd
 
 
 
7d6ee37
16270cd
7d6ee37
16270cd
 
 
 
7d6ee37
 
 
16270cd
 
 
7d6ee37
 
16270cd
 
 
7d6ee37
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# /// script
# requires-python = ">=3.12"
# dependencies = [
#     "polars>=1.31.0",
#     "huggingface-hub",
#     "datasets",
#     "ascii-graph",
# ]
# ///
"""
Analyze educational quality trends across CommonCrawl dumps using Polars streaming.

Answers: "Is the web getting more educational over time?"

Demonstrates Polars HF Hub integration - process 50M+ docs without downloading 300GB+.

Example usage:
    # Analyze English PDFs (default)
    uv run finepdfs-stats.py

    # Analyze all 70+ languages
    uv run finepdfs-stats.py --all-languages

    # Quick test
    uv run finepdfs-stats.py --limit 10000 --show-plan

    # Save results to HF Hub
    uv run finepdfs-stats.py --output-repo username/finepdfs-temporal-stats

    # Run on HF Jobs
    hf jobs uv run \\
        -s HF_TOKEN \\
        -e HF_XET_HIGH_PERFORMANCE=1 \\
        https://huggingface.co/datasets/uv-scripts/dataset-stats/raw/main/finepdfs-stats.py \\
        -- --output-repo username/stats
"""

import argparse
import logging
import os
import sys
import time
from pathlib import Path

import polars as pl
from ascii_graph import Pyasciigraph
from datasets import Dataset
from huggingface_hub import HfApi, create_repo, list_repo_tree, login

logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)

# Common language+script codes for finepdfs-edu
COMMON_LANGUAGES = {
    "eng_Latn": "English (Latin script)",
    "fra_Latn": "French (Latin script)",
    "deu_Latn": "German (Latin script)",
    "spa_Latn": "Spanish (Latin script)",
    "por_Latn": "Portuguese (Latin script)",
    "ita_Latn": "Italian (Latin script)",
    "nld_Latn": "Dutch (Latin script)",
    "pol_Latn": "Polish (Latin script)",
    "rus_Cyrl": "Russian (Cyrillic script)",
    "zho_Hans": "Chinese (Simplified)",
    "zho_Hant": "Chinese (Traditional)",
    "jpn_Jpan": "Japanese",
    "kor_Hang": "Korean",
    "ara_Arab": "Arabic",
    "hin_Deva": "Hindi (Devanagari)",
}


def list_available_languages(dataset_id: str) -> list[str]:
    """List available language subsets in the dataset."""
    try:
        tree = list_repo_tree(dataset_id, path_in_repo="data", repo_type="dataset")
        languages = [
            item.path.replace("data/", "")
            for item in tree
            if item.path.startswith("data/")
            and "/" not in item.path.replace("data/", "")
        ]
        return sorted(languages)
    except Exception as e:
        logger.warning(f"Could not list languages: {e}")
        return list(COMMON_LANGUAGES.keys())


def compute_temporal_stats(df: pl.LazyFrame, output_path: Path) -> pl.DataFrame:
    """Single scan: compute stats grouped by dump for temporal analysis."""
    query = df.group_by("dump").agg(
        pl.len().alias("doc_count"),
        pl.col("token_count").sum().alias("total_tokens"),
        pl.col("fw_edu_scores").list.mean().mean().alias("avg_edu_score"),
        (pl.col("fw_edu_scores").list.mean() >= 3).sum().alias("high_edu_count"),
    )
    query.sink_parquet(output_path, engine="streaming")
    return pl.read_parquet(output_path)


def compute_global_stats(temporal: pl.DataFrame) -> pl.DataFrame:
    """Compute global stats from temporal breakdown."""
    total = temporal["doc_count"].sum()
    return pl.DataFrame(
        {
            "total_docs": [total],
            "total_tokens": [temporal["total_tokens"].sum()],
            "avg_edu_score": [
                (temporal["avg_edu_score"] * temporal["doc_count"]).sum() / total
            ],
            "high_edu_rate": [temporal["high_edu_count"].sum() / total],
            "num_dumps": [len(temporal)],
        }
    )


def format_temporal_stats(temporal: pl.DataFrame) -> pl.DataFrame:
    """Format temporal stats with high_edu_rate, sorted chronologically."""
    return (
        temporal.with_columns(
            (pl.col("high_edu_count") / pl.col("doc_count")).alias("high_edu_rate")
        )
        .select(["dump", "doc_count", "avg_edu_score", "high_edu_rate"])
        .sort(
            "dump"
        )  # Chronological order (CC-MAIN-2017-xx comes before CC-MAIN-2024-xx)
    )


def create_ascii_charts(temporal_stats: pl.DataFrame) -> str:
    """Create ASCII bar charts showing temporal trends."""
    # Extract year from dump name (CC-MAIN-2024-42 -> 2024)
    # Group by year and average the values for cleaner display
    yearly = (
        temporal_stats.with_columns(
            pl.col("dump").str.extract(r"CC-MAIN-(\d{4})", 1).alias("year")
        )
        .group_by("year")
        .agg(
            pl.col("doc_count").sum(),
            pl.col("avg_edu_score").mean(),
            pl.col("high_edu_rate").mean(),
        )
        .sort("year")
    )

    lines = []

    # High edu rate chart (more dramatic differences)
    data_rate = [
        (row["year"], row["high_edu_rate"] * 100)
        for row in yearly.iter_rows(named=True)
    ]
    graph = Pyasciigraph(line_length=60, float_format="{0:.1f}%")
    lines.extend(graph.graph("High Educational Content (edu >= 3)", data_rate))

    lines.append("")

    # Avg edu score chart
    data_score = [
        (row["year"], row["avg_edu_score"]) for row in yearly.iter_rows(named=True)
    ]
    graph2 = Pyasciigraph(line_length=60, float_format="{0:.2f}")
    lines.extend(graph2.graph("Average Educational Score", data_score))

    return "\n".join(lines)


def create_readme(
    args,
    global_stats: pl.DataFrame,
    temporal_stats: pl.DataFrame,
    scan_time: float,
    ascii_charts: str,
) -> str:
    """Create README content for the stats dataset."""
    stats = global_stats.to_dicts()[0]
    total_docs = stats.get("total_docs", 0)
    docs_per_sec = total_docs / scan_time if scan_time > 0 else 0

    # Get first and last year averages for trend (more representative than single dumps)
    yearly = (
        temporal_stats.with_columns(
            pl.col("dump").str.extract(r"CC-MAIN-(\d{4})", 1).alias("year")
        )
        .group_by("year")
        .agg(
            pl.col("doc_count").sum(),
            pl.col("avg_edu_score").mean(),
            pl.col("high_edu_rate").mean(),
        )
        .sort("year")
    )
    first_year = yearly.head(1).to_dicts()[0]
    last_year = yearly.tail(1).to_dicts()[0]

    scope = (
        "all languages"
        if args.all_languages
        else COMMON_LANGUAGES.get(args.lang, args.lang)
    )

    return f"""---
tags:
  - uv-script
  - statistics
  - polars
  - finepdfs-edu
  - temporal-analysis
license: odc-by
configs:
  - config_name: global_stats
    data_files: global_stats/train-*.parquet
  - config_name: temporal_stats
    data_files: temporal_stats/train-*.parquet
default_viewer_config: temporal_stats
---

# Is the Web Getting More Educational?

Temporal analysis of educational quality in **{scope}** across {stats.get("num_dumps", 0)} CommonCrawl dumps.

## Trend

```
{ascii_charts}
```

## Key Finding

| Year | Avg Edu Score | High Edu Rate |
|------|---------------|---------------|
| {first_year["year"]} | {first_year["avg_edu_score"]:.2f} | {first_year["high_edu_rate"] * 100:.1f}% |
| {last_year["year"]} | {last_year["avg_edu_score"]:.2f} | {last_year["high_edu_rate"] * 100:.1f}% |

## Performance

- **{total_docs:,} documents** processed in **{scan_time:.0f} seconds**
- **{docs_per_sec:,.0f} docs/sec** using Polars streaming
- Single scan, no full dataset download required

## Summary

| Metric | Value |
|--------|-------|
| Scope | {scope} |
| Total Documents | {total_docs:,} |
| Total Tokens | {stats.get("total_tokens", 0):,} |
| Avg Edu Score | {stats.get("avg_edu_score", 0):.3f} |
| High Edu Rate | {stats.get("high_edu_rate", 0) * 100:.1f}% |
| CommonCrawl Dumps | {stats.get("num_dumps", 0)} |

## Files

- `global_stats` - Overall summary
- `temporal_stats` - Per-dump breakdown (sorted chronologically)

## Reproduce

```bash
uv run https://huggingface.co/datasets/uv-scripts/dataset-stats/raw/main/finepdfs-stats.py \\
    {"--all-languages" if args.all_languages else f"--lang {args.lang}"} --output-repo your-username/stats
```

## Source

- **Dataset**: [{args.source_dataset}](https://huggingface.co/datasets/{args.source_dataset})
- **Script**: [uv-scripts/dataset-stats](https://huggingface.co/datasets/uv-scripts/dataset-stats)
"""


def main():
    parser = argparse.ArgumentParser(
        description="Analyze educational quality trends across CommonCrawl dumps",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog=__doc__,
    )

    parser.add_argument(
        "--source-dataset",
        type=str,
        default="HuggingFaceFW/finepdfs-edu",
        help="Source dataset (default: HuggingFaceFW/finepdfs-edu)",
    )

    parser.add_argument(
        "--lang",
        type=str,
        default="eng_Latn",
        help="Language+script code (default: eng_Latn)",
    )

    parser.add_argument(
        "--all-languages",
        action="store_true",
        help="Analyze all languages (70+) instead of single language",
    )

    parser.add_argument(
        "--show-plan",
        action="store_true",
        help="Show Polars query plan (demonstrates optimization)",
    )

    parser.add_argument(
        "--list-languages",
        action="store_true",
        help="List available languages and exit",
    )

    parser.add_argument(
        "--limit",
        type=int,
        help="Limit to first N rows (for testing)",
    )

    parser.add_argument(
        "--output-repo",
        type=str,
        help="HuggingFace dataset repository to upload results",
    )

    parser.add_argument(
        "--output-dir",
        type=str,
        default="./stats_output",
        help="Local directory for output files",
    )

    parser.add_argument(
        "--hf-token",
        type=str,
        help="HuggingFace API token (or set HF_TOKEN env var)",
    )

    parser.add_argument(
        "--private",
        action="store_true",
        help="Make the output dataset private",
    )

    args = parser.parse_args()

    # Check for high-performance mode
    if os.environ.get("HF_XET_HIGH_PERFORMANCE"):
        logger.info("High-performance mode enabled (HF_XET_HIGH_PERFORMANCE=1)")

    # List languages mode
    if args.list_languages:
        print(f"Available language+script codes for {args.source_dataset}:\n")
        print("Common languages:")
        for code, name in COMMON_LANGUAGES.items():
            print(f"  {code:12} - {name}")
        print("\nFetching full list from HF Hub...")
        all_langs = list_available_languages(args.source_dataset)
        print(f"\nAll available ({len(all_langs)} total):")
        for lang in all_langs[:30]:  # Show first 30
            name = COMMON_LANGUAGES.get(lang, "")
            print(f"  {lang:12} {name}")
        if len(all_langs) > 30:
            print(f"  ... and {len(all_langs) - 30} more")
        sys.exit(0)

    # Build the parquet path
    if args.all_languages:
        source_path = f"hf://datasets/{args.source_dataset}/data/*/train/*.parquet"
        scope_desc = "all languages"
    else:
        source_path = (
            f"hf://datasets/{args.source_dataset}/data/{args.lang}/train/*.parquet"
        )
        scope_desc = f"{args.lang} ({COMMON_LANGUAGES.get(args.lang, 'unknown')})"

    logger.info(f"Scanning: {source_path}")
    logger.info(f"Scope: {scope_desc}")

    # Create lazy frame - this doesn't load any data yet!
    logger.info("Creating lazy query plan...")
    df = pl.scan_parquet(source_path)

    # Apply limit if specified
    if args.limit:
        logger.info(f"Limiting to first {args.limit:,} rows")
        df = df.head(args.limit)

    # Show query plan if requested
    if args.show_plan:
        # Build a sample query to show the plan
        sample_query = df.select(
            pl.len(),
            pl.col("token_count").sum(),
            pl.col("language").n_unique(),
        )
        print("\nQuery Plan (showing Polars optimization):")
        print("=" * 60)
        print(sample_query.explain())
        print("=" * 60)
        print("\nNote: Polars uses projection pushdown - only reads columns needed!")
        print("The 'text' column is never loaded, making this very fast.\n")

    # Create output directory
    output_dir = Path(args.output_dir)
    output_dir.mkdir(parents=True, exist_ok=True)

    # Single scan: compute temporal stats
    logger.info("Computing temporal stats (single scan)...")
    start = time.perf_counter()
    temporal_path = output_dir / "temporal_stats.parquet"
    temporal_raw = compute_temporal_stats(df, temporal_path)
    scan_time = time.perf_counter() - start
    logger.info(f"Scan complete in {scan_time:.2f}s - {len(temporal_raw)} dumps")

    # Compute stats
    global_stats = compute_global_stats(temporal_raw)
    temporal_stats = format_temporal_stats(temporal_raw)

    # Save
    global_stats.write_parquet(output_dir / "global_stats.parquet")
    temporal_stats.write_parquet(output_dir / "temporal_stats.parquet")

    # Print results
    total_docs = global_stats["total_docs"][0]
    docs_per_sec = total_docs / scan_time if scan_time > 0 else 0

    print("\n" + "=" * 70)
    print("IS THE WEB GETTING MORE EDUCATIONAL?")
    print("=" * 70)

    print(f"\nScope: {scope_desc}")
    print(f"Dataset: {args.source_dataset}")

    print("\n" + "-" * 70)
    print("GLOBAL STATS")
    print("-" * 70)
    print(global_stats)

    print("\n" + "-" * 70)
    print(f"TEMPORAL TREND ({len(temporal_stats)} CommonCrawl dumps)")
    print("-" * 70)
    # Show first 5 and last 5
    if len(temporal_stats) > 10:
        print("Earliest dumps:")
        print(temporal_stats.head(5))
        print("\n...")
        print("\nLatest dumps:")
        print(temporal_stats.tail(5))
    else:
        print(temporal_stats)

    # Create ASCII charts
    ascii_charts = create_ascii_charts(temporal_stats)
    print("\n" + "-" * 70)
    print("TREND VISUALIZATION")
    print("-" * 70)
    print(ascii_charts)

    print("\n" + "-" * 70)
    print("PERFORMANCE")
    print("-" * 70)
    print(f"Scan time: {scan_time:.2f}s")
    print(f"Documents: {total_docs:,}")
    print(f"Throughput: {docs_per_sec:,.0f} docs/sec")

    logger.info(f"Results saved to: {output_dir}")

    # Upload to HF Hub if requested
    if args.output_repo:
        hf_token = args.hf_token or os.environ.get("HF_TOKEN")
        if hf_token:
            login(token=hf_token)

        api = HfApi(token=hf_token)

        logger.info(f"Creating/updating dataset repository: {args.output_repo}")
        create_repo(
            args.output_repo,
            repo_type="dataset",
            private=args.private,
            token=hf_token,
            exist_ok=True,
        )

        # Upload each as a dataset config
        configs = [
            ("global_stats", global_stats),
            ("temporal_stats", temporal_stats),
        ]

        for config_name, stats_df in configs:
            logger.info(f"Uploading {config_name}...")
            ds = Dataset.from_polars(stats_df)
            ds.push_to_hub(
                args.output_repo,
                config_name=config_name,
                token=hf_token,
                private=args.private,
            )
            time.sleep(1)  # Avoid 409 conflicts

        # Upload README
        readme_content = create_readme(
            args, global_stats, temporal_stats, scan_time, ascii_charts
        )
        api.upload_file(
            path_or_fileobj=readme_content.encode(),
            path_in_repo="README.md",
            repo_id=args.output_repo,
            repo_type="dataset",
            token=hf_token,
        )

        dataset_url = f"https://huggingface.co/datasets/{args.output_repo}"
        logger.info(f"Dataset uploaded: {dataset_url}")
        print(f"\nResults uploaded to: {dataset_url}")


if __name__ == "__main__":
    if len(sys.argv) == 1:
        print("Is the Web Getting More Educational?")
        print("=" * 40)
        print("\nAnalyze educational quality trends across CommonCrawl dumps")
        print("using Polars streaming - no download needed!\n")
        print("Example commands:\n")
        print("# Quick test:")
        print("uv run finepdfs-stats.py --limit 10000\n")
        print("# Analyze English PDFs:")
        print("uv run finepdfs-stats.py\n")
        print("# Analyze ALL 70+ languages:")
        print("uv run finepdfs-stats.py --all-languages\n")
        print("# Show query plan (see Polars optimization):")
        print("uv run finepdfs-stats.py --show-plan --limit 1000\n")
        print("# Save results to HF Hub:")
        print("uv run finepdfs-stats.py --output-repo username/temporal-stats\n")
        print("# Run on HF Jobs:")
        print("hf jobs uv run \\")
        print("    -s HF_TOKEN \\")
        print("    -e HF_XET_HIGH_PERFORMANCE=1 \\")
        print(
            "    https://huggingface.co/datasets/uv-scripts/dataset-stats/raw/main/finepdfs-stats.py \\"
        )
        print("    -- --output-repo username/stats")
        sys.exit(0)

    main()