Spaces:
Running
on
Zero
Running
on
Zero
Add Gradio app for Spaces
Browse files- demo.py +916 -0
- requirements.txt +11 -0
demo.py
ADDED
|
@@ -0,0 +1,916 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# =========================
|
| 2 |
+
# ONE-CELL: SDXL + CritiCore + SpecFusion + Gradio UI
|
| 3 |
+
# - Fixes: api_name=False + show_api=False, share=True, VARIANT_* before Blocks
|
| 4 |
+
# - UI style follows your reference (ui_run_once + _run_async + gallery/meta)
|
| 5 |
+
# =========================
|
| 6 |
+
|
| 7 |
+
import os, re, io, json, time, base64, asyncio, inspect, traceback
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from typing import List, Dict, Optional, Tuple, Iterable, Set
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import nest_asyncio
|
| 14 |
+
nest_asyncio.apply()
|
| 15 |
+
|
| 16 |
+
import gradio as gr
|
| 17 |
+
from diffusers import (
|
| 18 |
+
StableDiffusionXLPipeline,
|
| 19 |
+
StableDiffusionXLImg2ImgPipeline,
|
| 20 |
+
DPMSolverMultistepScheduler,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
# =========================
|
| 24 |
+
# 0) Variant names / display order (MUST be BEFORE Blocks)
|
| 25 |
+
# =========================
|
| 26 |
+
VARIANT_LABELS = {
|
| 27 |
+
"base_multi_llm": "1_base_multi_llm",
|
| 28 |
+
"criticore_on_multi_llm__specfusion": "2_criticore_on_multi_llm__specfusion",
|
| 29 |
+
"base_original": "3_base_original",
|
| 30 |
+
"criticore_on_original__specfusion": "4_criticore_on_original__specfusion",
|
| 31 |
+
}
|
| 32 |
+
VARIANT_ORDER = [
|
| 33 |
+
"1_base_multi_llm",
|
| 34 |
+
"2_criticore_on_multi_llm__specfusion",
|
| 35 |
+
"3_base_original",
|
| 36 |
+
"4_criticore_on_original__specfusion",
|
| 37 |
+
]
|
| 38 |
+
RHO_T_DEFAULT = 0.85 # fixed as requested
|
| 39 |
+
|
| 40 |
+
# ---- SAFETY: do NOT hardcode API keys ----
|
| 41 |
+
TOGETHER_API_KEY = os.environ.get("TOGETHER_API_KEY", "").strip()
|
| 42 |
+
if not TOGETHER_API_KEY:
|
| 43 |
+
print("[Warn] TOGETHER_API_KEY is not set. CritiCore will fail if you use Together models.")
|
| 44 |
+
|
| 45 |
+
# =========================
|
| 46 |
+
# 1) SDXL init
|
| 47 |
+
# =========================
|
| 48 |
+
DEVICE_STR = "cuda" if torch.cuda.is_available() else "cpu"
|
| 49 |
+
DEVICE = torch.device(DEVICE_STR)
|
| 50 |
+
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 51 |
+
SDXL_ID = os.environ.get("SDXL_ID", "stabilityai/stable-diffusion-xl-base-1.0")
|
| 52 |
+
|
| 53 |
+
print(f"[Init] DEVICE={DEVICE_STR} DTYPE={DTYPE} SDXL_ID={SDXL_ID}")
|
| 54 |
+
|
| 55 |
+
SDXL_base = StableDiffusionXLPipeline.from_pretrained(SDXL_ID, torch_dtype=DTYPE).to(DEVICE)
|
| 56 |
+
SDXL_i2i = StableDiffusionXLImg2ImgPipeline.from_pretrained(SDXL_ID, torch_dtype=DTYPE).to(DEVICE)
|
| 57 |
+
|
| 58 |
+
for p in (SDXL_base, SDXL_i2i):
|
| 59 |
+
try:
|
| 60 |
+
p.enable_vae_slicing()
|
| 61 |
+
p.enable_attention_slicing()
|
| 62 |
+
except Exception:
|
| 63 |
+
pass
|
| 64 |
+
p.scheduler = DPMSolverMultistepScheduler.from_config(p.scheduler.config, use_karras_sigmas=True)
|
| 65 |
+
|
| 66 |
+
DEFAULT_NEG = (
|
| 67 |
+
"blurry, low quality, artifacts, watermark, extra fingers, missing limbs, "
|
| 68 |
+
"over-sharpened, harsh lighting, oversaturated"
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
@torch.no_grad()
|
| 72 |
+
def decode_image_sdxl(latents: torch.Tensor, pipe: StableDiffusionXLImg2ImgPipeline, output_type="pil"):
|
| 73 |
+
vae = pipe.vae
|
| 74 |
+
needs_upcast = (vae.dtype in (torch.float16, torch.bfloat16)) and bool(getattr(vae.config, "force_upcast", False))
|
| 75 |
+
if needs_upcast:
|
| 76 |
+
try:
|
| 77 |
+
pipe.upcast_vae()
|
| 78 |
+
except Exception:
|
| 79 |
+
pipe.vae = pipe.vae.to(torch.float32)
|
| 80 |
+
vae = pipe.vae
|
| 81 |
+
|
| 82 |
+
lat = latents.to(device=vae.device, dtype=(next(vae.post_quant_conv.parameters()).dtype))
|
| 83 |
+
lat = lat / vae.config.scaling_factor
|
| 84 |
+
out = vae.decode(lat)
|
| 85 |
+
x = out[0] if isinstance(out, (list, tuple)) else (out.sample if hasattr(out, "sample") else out)
|
| 86 |
+
if getattr(pipe, "watermark", None) is not None:
|
| 87 |
+
x = pipe.watermark.apply_watermark(x)
|
| 88 |
+
img = pipe.image_processor.postprocess(x.detach(), output_type=output_type)[0]
|
| 89 |
+
return img
|
| 90 |
+
|
| 91 |
+
@torch.no_grad()
|
| 92 |
+
def base_sample_latent(prompt: str, seed: int = 2025, H: int = 1024, W: int = 1024, neg: str = ""):
|
| 93 |
+
g = torch.Generator(device=DEVICE).manual_seed(int(seed))
|
| 94 |
+
out = SDXL_base(
|
| 95 |
+
prompt=prompt,
|
| 96 |
+
negative_prompt=neg,
|
| 97 |
+
height=int(H), width=int(W),
|
| 98 |
+
guidance_scale=4.5,
|
| 99 |
+
num_inference_steps=50,
|
| 100 |
+
generator=g,
|
| 101 |
+
output_type="latent"
|
| 102 |
+
)
|
| 103 |
+
z0 = out.images
|
| 104 |
+
x0 = decode_image_sdxl(z0, SDXL_i2i)
|
| 105 |
+
return z0, x0
|
| 106 |
+
|
| 107 |
+
@torch.no_grad()
|
| 108 |
+
def img2img_latent(prompt: str, image_or_latent, strength: float, guidance: float, steps: int, seed: int):
|
| 109 |
+
g = torch.Generator(device=DEVICE).manual_seed(int(seed))
|
| 110 |
+
out = SDXL_i2i(
|
| 111 |
+
prompt=prompt,
|
| 112 |
+
image=image_or_latent,
|
| 113 |
+
strength=float(strength),
|
| 114 |
+
guidance_scale=float(guidance),
|
| 115 |
+
num_inference_steps=int(steps),
|
| 116 |
+
generator=g,
|
| 117 |
+
output_type="latent",
|
| 118 |
+
negative_prompt=DEFAULT_NEG
|
| 119 |
+
)
|
| 120 |
+
return out.images
|
| 121 |
+
|
| 122 |
+
def strength_for_last_k(k: int, total_steps: int) -> float:
|
| 123 |
+
k = max(1, int(k))
|
| 124 |
+
return min(0.95, max(0.01, float(k) / float(max(1, total_steps))))
|
| 125 |
+
|
| 126 |
+
# =========================
|
| 127 |
+
# 2) CLIP-77 + text utils
|
| 128 |
+
# =========================
|
| 129 |
+
try:
|
| 130 |
+
from transformers import CLIPTokenizerFast
|
| 131 |
+
_clip_tok = CLIPTokenizerFast.from_pretrained("openai/clip-vit-large-patch14")
|
| 132 |
+
def _count_tokens(txt: str) -> int:
|
| 133 |
+
return len(_clip_tok(txt, add_special_tokens=True, truncation=False)["input_ids"])
|
| 134 |
+
except Exception:
|
| 135 |
+
_clip_tok = None
|
| 136 |
+
def _count_tokens(txt: str) -> int:
|
| 137 |
+
return int(len(re.findall(r"\w+", txt)) * 1.3)
|
| 138 |
+
|
| 139 |
+
def _cleanup_commas(s: str) -> str:
|
| 140 |
+
s = re.sub(r"\s*,\s*", ", ", (s or "").strip())
|
| 141 |
+
s = re.sub(r"(,\s*){2,}", ", ", s)
|
| 142 |
+
return s.strip(" ,")
|
| 143 |
+
|
| 144 |
+
def clip77_strict(text: str, max_tok: int = 77) -> str:
|
| 145 |
+
text = (text or "").strip()
|
| 146 |
+
if _count_tokens(text) <= max_tok:
|
| 147 |
+
return text
|
| 148 |
+
words = text.split()
|
| 149 |
+
lo, hi, best = 0, len(words), ""
|
| 150 |
+
while lo <= hi:
|
| 151 |
+
mid = (lo + hi) // 2
|
| 152 |
+
cand = " ".join(words[:mid]) if mid > 0 else ""
|
| 153 |
+
if _count_tokens(cand) <= max_tok:
|
| 154 |
+
best = cand; lo = mid + 1
|
| 155 |
+
else:
|
| 156 |
+
hi = mid - 1
|
| 157 |
+
return best.strip()
|
| 158 |
+
|
| 159 |
+
def _split_tags(s: str) -> List[str]:
|
| 160 |
+
return [p.strip() for p in re.split(r",|\n", (s or "").strip()) if p.strip()]
|
| 161 |
+
|
| 162 |
+
def _dedup_keep_order(items: List[str]) -> List[str]:
|
| 163 |
+
seen, out = set(), []
|
| 164 |
+
for t in items:
|
| 165 |
+
key = re.sub(r"\s+", " ", t.lower()).strip()
|
| 166 |
+
if key and key not in seen:
|
| 167 |
+
seen.add(key); out.append(t.strip())
|
| 168 |
+
return out
|
| 169 |
+
|
| 170 |
+
def _order_tags(subject_first: List[str], rest: List[str]) -> List[str]:
|
| 171 |
+
buckets = {"subject": [], "style": [], "composition": [], "lighting": [], "color": [], "detail": [], "other": []}
|
| 172 |
+
style_kw = ("style","painterly","illustration","photorealistic","neon","poster","matte painting","watercolor","cyberpunk")
|
| 173 |
+
comp_kw = ("composition","rule of thirds","centered","symmetry","balanced composition")
|
| 174 |
+
light_kw = ("lighting","light","glow","glowing","rim","sunset","sunrise","golden hour","global illumination","cinematic")
|
| 175 |
+
color_kw = ("color","palette","vibrant","muted","monochrome","pastel","warm","cool","balanced contrast")
|
| 176 |
+
detail_kw= ("detailed","hyperdetailed","texture","intricate","high detail","highly detailed","sharp focus","uhd","8k")
|
| 177 |
+
|
| 178 |
+
for t in subject_first:
|
| 179 |
+
if t: buckets["subject"].append(t)
|
| 180 |
+
for t in rest:
|
| 181 |
+
lt = t.lower()
|
| 182 |
+
if any(k in lt for k in style_kw): buckets["style"].append(t)
|
| 183 |
+
elif any(k in lt for k in comp_kw): buckets["composition"].append(t)
|
| 184 |
+
elif any(k in lt for k in light_kw): buckets["lighting"].append(t)
|
| 185 |
+
elif any(k in lt for k in color_kw): buckets["color"].append(t)
|
| 186 |
+
elif any(k in lt for k in detail_kw): buckets["detail"].append(t)
|
| 187 |
+
else: buckets["other"].append(t)
|
| 188 |
+
|
| 189 |
+
return buckets["subject"] + buckets["style"] + buckets["composition"] + buckets["lighting"] + buckets["color"] + buckets["detail"] + buckets["other"]
|
| 190 |
+
|
| 191 |
+
def pil_to_base64(img: Image.Image, fmt: str = "PNG") -> str:
|
| 192 |
+
buf = io.BytesIO()
|
| 193 |
+
img.save(buf, format=fmt)
|
| 194 |
+
return base64.b64encode(buf.getvalue()).decode("ascii")
|
| 195 |
+
|
| 196 |
+
async def _maybe_close_async_together(client) -> None:
|
| 197 |
+
try:
|
| 198 |
+
if hasattr(client, "aclose") and inspect.iscoroutinefunction(client.aclose):
|
| 199 |
+
await client.aclose()
|
| 200 |
+
elif hasattr(client, "close"):
|
| 201 |
+
fn = client.close
|
| 202 |
+
if inspect.iscoroutinefunction(fn):
|
| 203 |
+
await fn()
|
| 204 |
+
else:
|
| 205 |
+
try: fn()
|
| 206 |
+
except Exception: pass
|
| 207 |
+
except Exception:
|
| 208 |
+
pass
|
| 209 |
+
|
| 210 |
+
# =========================
|
| 211 |
+
# 3) Async runner (reference style, but made safer for notebook/gradio)
|
| 212 |
+
# =========================
|
| 213 |
+
def _run_async(coro):
|
| 214 |
+
"""
|
| 215 |
+
Robust sync->async bridge for:
|
| 216 |
+
- notebook (loop already running, same thread) via nest_asyncio + run_until_complete
|
| 217 |
+
- normal python (no running loop) via asyncio.run
|
| 218 |
+
"""
|
| 219 |
+
try:
|
| 220 |
+
loop = asyncio.get_event_loop()
|
| 221 |
+
if loop.is_running():
|
| 222 |
+
# nest_asyncio makes this workable in notebook main loop
|
| 223 |
+
return loop.run_until_complete(coro)
|
| 224 |
+
return loop.run_until_complete(coro)
|
| 225 |
+
except RuntimeError:
|
| 226 |
+
return asyncio.run(coro)
|
| 227 |
+
|
| 228 |
+
# =========================
|
| 229 |
+
# 4) CritiCore (Together)
|
| 230 |
+
# =========================
|
| 231 |
+
from together import AsyncTogether
|
| 232 |
+
|
| 233 |
+
AGGREGATOR_MODEL = os.environ.get("AGGREGATOR_MODEL", "Qwen/Qwen2.5-72B-Instruct-Turbo")
|
| 234 |
+
LLM_MULTI_CANDIDATES = [
|
| 235 |
+
"meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
| 236 |
+
"Qwen/Qwen2.5-72B-Instruct-Turbo",
|
| 237 |
+
"Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 238 |
+
"deepseek-ai/DeepSeek-V3",
|
| 239 |
+
"nvidia/NVIDIA-Nemotron-Nano-9B-v2",
|
| 240 |
+
]
|
| 241 |
+
_env_list = [s.strip() for s in os.environ.get("VLM_MOA_CANDIDATES","").split(",") if s.strip()]
|
| 242 |
+
VLM_CANDIDATES = _env_list or ["meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"]
|
| 243 |
+
|
| 244 |
+
TAG_PRESETS = {
|
| 245 |
+
"hq_preference": {
|
| 246 |
+
"seed_pos": [
|
| 247 |
+
"balanced composition",
|
| 248 |
+
"natural color palette","vibrant colors","balanced contrast",
|
| 249 |
+
"high detail","highly detailed","hyperdetailed","sharp focus",
|
| 250 |
+
"UHD","8k"
|
| 251 |
+
],
|
| 252 |
+
"seed_neg": [
|
| 253 |
+
"low quality","blurry","watermark","jpeg artifacts","overexposed","underexposed",
|
| 254 |
+
"color banding","extra fingers","missing limbs","disfigured","mutated hands"
|
| 255 |
+
]
|
| 256 |
+
}
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
_DECOMP_SYS = (
|
| 260 |
+
"Decompose the user's visual instruction into 3-6 concrete, checkable visual components "
|
| 261 |
+
"(entities + interactions + spatial relations). Return ONLY JSON: "
|
| 262 |
+
'{"components":["..."]}'
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
_TXT_SYS = (
|
| 266 |
+
"Expand a VERY SHORT visual idea into a COMMA-SEPARATED TAG LIST for SDXL.\n"
|
| 267 |
+
"Constraints:\n"
|
| 268 |
+
"- Start with the subject phrase first.\n"
|
| 269 |
+
"- Prioritize composition, lighting, color, and detail over style.\n"
|
| 270 |
+
"- Use at most TWO style tags if any.\n"
|
| 271 |
+
"- 16–26 concise tags total. Commas only, no sentences, no 'and'. No trailing period.\n"
|
| 272 |
+
"- Prefer human-preference aesthetics; keep 'high detailed', 'sharp focus', '8k', 'UHD'."
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
def _TAG_RE(tag: str):
|
| 276 |
+
return re.compile(rf"<\s*{tag}\s*>(.*?)</\s*{tag}\s*>", re.S|re.I)
|
| 277 |
+
|
| 278 |
+
def _extract_tag(text: str, tag: str, fallback: str = "") -> str:
|
| 279 |
+
s = (text or "").strip()
|
| 280 |
+
r = _TAG_RE(tag); m = r.search(s)
|
| 281 |
+
if m: return m.group(1).strip()
|
| 282 |
+
s2 = s.replace("<","<").replace(">",">")
|
| 283 |
+
m2 = r.search(s2)
|
| 284 |
+
return m2.group(1).strip() if m2 else fallback.strip()
|
| 285 |
+
|
| 286 |
+
def _summarize_issues_lines(text: str, max_lines: int = 5) -> str:
|
| 287 |
+
if not text: return ""
|
| 288 |
+
parts = [p.strip(" -•\t") for p in re.split(r"[\n;]+", text) if p.strip()]
|
| 289 |
+
parts = parts[:max_lines]
|
| 290 |
+
return "\n".join(f"- {p}" for p in parts)
|
| 291 |
+
|
| 292 |
+
class CritiCore:
|
| 293 |
+
def __init__(self, preset: str = "hq_preference", aggregator_model: str = AGGREGATOR_MODEL):
|
| 294 |
+
if not os.environ.get("TOGETHER_API_KEY"):
|
| 295 |
+
raise RuntimeError("Missing TOGETHER_API_KEY in environment.")
|
| 296 |
+
self.preset = preset
|
| 297 |
+
self.aggregator = aggregator_model
|
| 298 |
+
|
| 299 |
+
async def decompose_components(self, user_prompt: str) -> List[str]:
|
| 300 |
+
client = AsyncTogether(api_key=os.environ["TOGETHER_API_KEY"])
|
| 301 |
+
try:
|
| 302 |
+
tasks = [client.chat.completions.create(
|
| 303 |
+
model=m,
|
| 304 |
+
messages=[{"role":"system","content": _DECOMP_SYS},
|
| 305 |
+
{"role":"user","content": user_prompt}],
|
| 306 |
+
temperature=0.4, max_tokens=256
|
| 307 |
+
) for m in LLM_MULTI_CANDIDATES]
|
| 308 |
+
rs = await asyncio.gather(*tasks, return_exceptions=True)
|
| 309 |
+
texts = []
|
| 310 |
+
for r in rs:
|
| 311 |
+
try: texts.append(r.choices[0].message.content)
|
| 312 |
+
except Exception: pass
|
| 313 |
+
if not texts: return []
|
| 314 |
+
joined = "\n\n---\n\n".join(texts)
|
| 315 |
+
merged = await client.chat.completions.create(
|
| 316 |
+
model=self.aggregator,
|
| 317 |
+
messages=[{"role":"system","content": "Merge JSON candidates and return ONLY {'components':[...]}."},
|
| 318 |
+
{"role":"user","content": joined}],
|
| 319 |
+
temperature=0.2, max_tokens=256
|
| 320 |
+
)
|
| 321 |
+
txt = merged.choices[0].message.content
|
| 322 |
+
try:
|
| 323 |
+
obj = json.loads(txt)
|
| 324 |
+
except Exception:
|
| 325 |
+
s,e = txt.find("{"), txt.rfind("}")
|
| 326 |
+
obj = json.loads(txt[s:e+1]) if (s!=-1 and e!=-1) else {"components":[]}
|
| 327 |
+
comps = [c.strip() for c in obj.get("components", []) if isinstance(c, str) and c.strip()]
|
| 328 |
+
return comps[:6]
|
| 329 |
+
finally:
|
| 330 |
+
await _maybe_close_async_together(client)
|
| 331 |
+
|
| 332 |
+
async def make_tags(self, user_prompt: str, clip77: bool = True) -> Tuple[str, str]:
|
| 333 |
+
client = AsyncTogether(api_key=os.environ["TOGETHER_API_KEY"])
|
| 334 |
+
seed = TAG_PRESETS.get(self.preset, TAG_PRESETS["hq_preference"])
|
| 335 |
+
seed_pos = _dedup_keep_order(seed["seed_pos"])
|
| 336 |
+
seed_neg = seed["seed_neg"]
|
| 337 |
+
try:
|
| 338 |
+
tasks = [client.chat.completions.create(
|
| 339 |
+
model=m,
|
| 340 |
+
messages=[{"role":"system","content": _TXT_SYS},
|
| 341 |
+
{"role":"user","content":
|
| 342 |
+
f"Short idea: {user_prompt}\nSeed: {', '.join(seed_pos)}\nOutput: a single comma-separated tag list."}],
|
| 343 |
+
temperature=0.7, max_tokens=220
|
| 344 |
+
) for m in LLM_MULTI_CANDIDATES]
|
| 345 |
+
rs = await asyncio.gather(*tasks, return_exceptions=True)
|
| 346 |
+
props = []
|
| 347 |
+
for r in rs:
|
| 348 |
+
try: props.append(r.choices[0].message.content)
|
| 349 |
+
except Exception: pass
|
| 350 |
+
|
| 351 |
+
if not props:
|
| 352 |
+
pos = ", ".join([user_prompt.strip()] + seed_pos)
|
| 353 |
+
else:
|
| 354 |
+
joined = "\n---\n".join(props)
|
| 355 |
+
merged = await client.chat.completions.create(
|
| 356 |
+
model=self.aggregator,
|
| 357 |
+
messages=[{"role":"system","content":
|
| 358 |
+
"Merge candidate tag lists into ONE comma list (16–26 tags). Subject first; at most TWO style tags; keep high detailed/sharp focus/8k/UHD."},
|
| 359 |
+
{"role":"user","content": joined}],
|
| 360 |
+
temperature=0.2, max_tokens=240
|
| 361 |
+
)
|
| 362 |
+
raw = merged.choices[0].message.content
|
| 363 |
+
tags = _dedup_keep_order(_split_tags(raw))
|
| 364 |
+
subject = user_prompt.strip().rstrip(",.")
|
| 365 |
+
if subject and not any(subject.lower() == t.lower() for t in tags):
|
| 366 |
+
tags = [subject] + tags
|
| 367 |
+
ordered = _order_tags([tags[0]], tags[1:])
|
| 368 |
+
pos = ", ".join(_dedup_keep_order(ordered))
|
| 369 |
+
|
| 370 |
+
# quality floor
|
| 371 |
+
for q in ["high detailed","sharp focus","8k","UHD"]:
|
| 372 |
+
if q.lower() not in {t.lower() for t in _split_tags(pos)}:
|
| 373 |
+
pos += ", " + q
|
| 374 |
+
|
| 375 |
+
pos = _cleanup_commas(pos)
|
| 376 |
+
if clip77 and _count_tokens(pos) > 77:
|
| 377 |
+
pos = clip77_strict(pos, 77)
|
| 378 |
+
|
| 379 |
+
neg = ", ".join(seed_neg)
|
| 380 |
+
return pos, neg
|
| 381 |
+
finally:
|
| 382 |
+
await _maybe_close_async_together(client)
|
| 383 |
+
|
| 384 |
+
async def vlm_refine(self, image: Image.Image, original_prompt: str, components: List[str]) -> Dict[str, object]:
|
| 385 |
+
client = AsyncTogether(api_key=os.environ["TOGETHER_API_KEY"])
|
| 386 |
+
b64 = pil_to_base64(image, "PNG")
|
| 387 |
+
|
| 388 |
+
def _user_prompt_text() -> str:
|
| 389 |
+
return (
|
| 390 |
+
"You are a precise image-grounded critic.\n"
|
| 391 |
+
"1) List concrete visual problems and brief corrections.\n"
|
| 392 |
+
"2) Provide a refined prompt that keeps the original intent.\n\n"
|
| 393 |
+
f'Original prompt: "{original_prompt}"\n'
|
| 394 |
+
f"Key components to check: {components}\n"
|
| 395 |
+
"Output EXACTLY two tags:\n"
|
| 396 |
+
"<issues>...</issues>\n<refined>...</refined>"
|
| 397 |
+
)
|
| 398 |
+
try:
|
| 399 |
+
tasks = []
|
| 400 |
+
for m in VLM_CANDIDATES:
|
| 401 |
+
msgs = [
|
| 402 |
+
{"role":"system","content": "Return ONLY <issues> and <refined>. No extra text."},
|
| 403 |
+
{"role":"user","content": [
|
| 404 |
+
{"type":"text","text": _user_prompt_text()},
|
| 405 |
+
{"type":"image_url","image_url":{"url": f"data:image/png;base64,{b64}"}}
|
| 406 |
+
]}
|
| 407 |
+
]
|
| 408 |
+
tasks.append(client.chat.completions.create(model=m, messages=msgs, temperature=0.2, max_tokens=420))
|
| 409 |
+
|
| 410 |
+
rs = await asyncio.gather(*tasks, return_exceptions=True)
|
| 411 |
+
ok = []
|
| 412 |
+
for m, r in zip(VLM_CANDIDATES, rs):
|
| 413 |
+
try: ok.append((m, r.choices[0].message.content))
|
| 414 |
+
except Exception: pass
|
| 415 |
+
|
| 416 |
+
if not ok:
|
| 417 |
+
return {"refined": original_prompt, "issues_merged": ""}
|
| 418 |
+
|
| 419 |
+
refined_items, per_vlm_issues = [], {}
|
| 420 |
+
for m, raw in ok:
|
| 421 |
+
issues = _extract_tag(raw, "issues", "")
|
| 422 |
+
refined = _extract_tag(raw, "refined", original_prompt)
|
| 423 |
+
if refined.strip(): refined_items.append((m, refined.strip()))
|
| 424 |
+
if issues.strip(): per_vlm_issues[m] = _summarize_issues_lines(issues, 5)
|
| 425 |
+
|
| 426 |
+
joined_issues = "\n".join(f"[{m}] {t}" for m,t in per_vlm_issues.items())
|
| 427 |
+
joined_refined = "\n".join(f"[{m}] {t}" for m,t in refined_items) if refined_items else original_prompt
|
| 428 |
+
|
| 429 |
+
merged = await client.chat.completions.create(
|
| 430 |
+
model=self.aggregator,
|
| 431 |
+
messages=[{"role":"system","content":
|
| 432 |
+
"Merge multiple critics. Output ONLY <issues> (≤5 bullets) and <refined> (≤70 words)."},
|
| 433 |
+
{"role":"user","content": f"{joined_issues}\n\n----\n\n{joined_refined}"}],
|
| 434 |
+
temperature=0.2, max_tokens=420
|
| 435 |
+
)
|
| 436 |
+
final_raw = merged.choices[0].message.content
|
| 437 |
+
final_refined = clip77_strict(_extract_tag(final_raw, "refined", original_prompt), 77)
|
| 438 |
+
issues_merged = _summarize_issues_lines(_extract_tag(final_raw, "issues", ""), 5)
|
| 439 |
+
|
| 440 |
+
return {"refined": final_refined, "issues_merged": issues_merged}
|
| 441 |
+
finally:
|
| 442 |
+
await _maybe_close_async_together(client)
|
| 443 |
+
|
| 444 |
+
@staticmethod
|
| 445 |
+
def merge_vlm_multi_text(vlm_refined_77: str, tags_77: str) -> str:
|
| 446 |
+
vlm_tags = _split_tags(vlm_refined_77)
|
| 447 |
+
moa_tags = _split_tags(tags_77)
|
| 448 |
+
merged = _dedup_keep_order(_order_tags([vlm_tags[0] if vlm_tags else ""], (vlm_tags[1:] + moa_tags)))
|
| 449 |
+
merged = [t for t in merged if t]
|
| 450 |
+
text = _cleanup_commas(", ".join(merged))
|
| 451 |
+
if _count_tokens(text) > 77:
|
| 452 |
+
text = clip77_strict(text, 77)
|
| 453 |
+
return text
|
| 454 |
+
|
| 455 |
+
# =========================
|
| 456 |
+
# 5) Standalone frequency_fusion (your reference)
|
| 457 |
+
# =========================
|
| 458 |
+
@torch.no_grad()
|
| 459 |
+
def frequency_fusion(
|
| 460 |
+
x_hi_latent: torch.Tensor,
|
| 461 |
+
x_lo_latent: torch.Tensor,
|
| 462 |
+
base_c: float = 0.5,
|
| 463 |
+
rho_t: float = 0.85,
|
| 464 |
+
device=None,
|
| 465 |
+
) -> torch.Tensor:
|
| 466 |
+
if device is None:
|
| 467 |
+
device = x_hi_latent.device
|
| 468 |
+
B, C, H, W = x_hi_latent.shape
|
| 469 |
+
|
| 470 |
+
x_h = x_hi_latent.to(torch.float32).to(device)
|
| 471 |
+
x_l = x_lo_latent.to(torch.float32).to(device)
|
| 472 |
+
|
| 473 |
+
Xh = torch.fft.fftshift(torch.fft.fftn(x_h, dim=(-2, -1)), dim=(-2, -1))
|
| 474 |
+
Xl = torch.fft.fftshift(torch.fft.fftn(x_l, dim=(-2, -1)), dim=(-2, -1))
|
| 475 |
+
|
| 476 |
+
tau_h = int(H * base_c * (1 - rho_t))
|
| 477 |
+
tau_w = int(W * base_c * (1 - rho_t))
|
| 478 |
+
|
| 479 |
+
mask = torch.ones((B, C, H, W), device=device, dtype=torch.float32)
|
| 480 |
+
cy, cx = H // 2, W // 2
|
| 481 |
+
if tau_h > 0 and tau_w > 0:
|
| 482 |
+
mask[..., cy - tau_h : cy + tau_h, cx - tau_w : cx + tau_w] = rho_t
|
| 483 |
+
|
| 484 |
+
Xf = Xh * mask + Xl * (1 - mask)
|
| 485 |
+
x = torch.fft.ifftn(torch.fft.ifftshift(Xf, dim=(-2, -1)), dim=(-2, -1)).real
|
| 486 |
+
x = x + torch.randn_like(x) * 0.001
|
| 487 |
+
return x.to(dtype=x_hi_latent.dtype)
|
| 488 |
+
|
| 489 |
+
def _decode_to_pil(latents, pipe):
|
| 490 |
+
out = decode_image_sdxl(latents, pipe)
|
| 491 |
+
if isinstance(out, Image.Image):
|
| 492 |
+
return out
|
| 493 |
+
if hasattr(out, "images"):
|
| 494 |
+
return out.images[0]
|
| 495 |
+
return out
|
| 496 |
+
|
| 497 |
+
# =========================
|
| 498 |
+
# 6) Helpers for variants
|
| 499 |
+
# =========================
|
| 500 |
+
def _normalize_enabled(enabled_variants: Optional[Iterable[str]]) -> Set[str]:
|
| 501 |
+
default = set(VARIANT_LABELS.keys())
|
| 502 |
+
if enabled_variants is None:
|
| 503 |
+
return default
|
| 504 |
+
return set(enabled_variants)
|
| 505 |
+
|
| 506 |
+
def _guidance_for_k(k: int) -> float:
|
| 507 |
+
if k >= 20: return 12.0
|
| 508 |
+
if k >= 10: return 7.5
|
| 509 |
+
return 5.2
|
| 510 |
+
|
| 511 |
+
async def _shared_materials(user_prompt: str, seed: int, H: int, W: int, preset: str):
|
| 512 |
+
critic = CritiCore(preset=preset)
|
| 513 |
+
|
| 514 |
+
pos_tags_77, neg_tags = await critic.make_tags(user_prompt, clip77=True)
|
| 515 |
+
comps = await critic.decompose_components(user_prompt)
|
| 516 |
+
|
| 517 |
+
z0_og, base_og = base_sample_latent(user_prompt, seed=seed, H=H, W=W, neg=DEFAULT_NEG)
|
| 518 |
+
z0_enh, base_enh = base_sample_latent(pos_tags_77, seed=seed, H=H, W=W, neg=neg_tags)
|
| 519 |
+
|
| 520 |
+
vlm_out = await critic.vlm_refine(base_enh, pos_tags_77, comps or [])
|
| 521 |
+
vlm_agg_77 = vlm_out.get("refined") or pos_tags_77
|
| 522 |
+
|
| 523 |
+
return dict(
|
| 524 |
+
pos_tags_77=pos_tags_77, neg_tags=neg_tags, comps=comps,
|
| 525 |
+
z0_og=z0_og, base_og=base_og,
|
| 526 |
+
z0_enh=z0_enh, base_enh=base_enh,
|
| 527 |
+
vlm_agg_77=vlm_agg_77,
|
| 528 |
+
critic=critic
|
| 529 |
+
)
|
| 530 |
+
|
| 531 |
+
async def _collect_meta(user_prompt: str, seed: int, H: int, W: int, preset: str):
|
| 532 |
+
shared = await _shared_materials(user_prompt, seed, H, W, preset)
|
| 533 |
+
return {
|
| 534 |
+
"user_prompt": user_prompt,
|
| 535 |
+
"pos_tags_77": shared["pos_tags_77"],
|
| 536 |
+
"neg_tags": shared["neg_tags"],
|
| 537 |
+
"components": shared["comps"],
|
| 538 |
+
"vlm_agg_77_on_multi_llm": shared["vlm_agg_77"],
|
| 539 |
+
}
|
| 540 |
+
|
| 541 |
+
# =========================
|
| 542 |
+
# 7) Variants generator (signature matches your reference: last_k_list + guidance_list)
|
| 543 |
+
# =========================
|
| 544 |
+
async def generate_variants(
|
| 545 |
+
user_prompt: str,
|
| 546 |
+
seed: int,
|
| 547 |
+
H: int, W: int,
|
| 548 |
+
total_steps_refine: int,
|
| 549 |
+
last_k_list: Iterable[int],
|
| 550 |
+
guidance_list: Optional[List[float]] = None,
|
| 551 |
+
preset: str = "hq_preference",
|
| 552 |
+
out_dir: Optional[Path] = None,
|
| 553 |
+
enabled_variants: Optional[Iterable[str]] = None,
|
| 554 |
+
) -> Dict[str, Dict[int, Image.Image]]:
|
| 555 |
+
enabled = _normalize_enabled(enabled_variants)
|
| 556 |
+
|
| 557 |
+
lk = int(last_k_list) if isinstance(last_k_list, int) else (int(list(last_k_list)[-1]) if last_k_list else 36)
|
| 558 |
+
|
| 559 |
+
shared = await _shared_materials(user_prompt, seed, H, W, preset)
|
| 560 |
+
pos_tags_77 = shared["pos_tags_77"]; comps = shared["comps"]
|
| 561 |
+
z0_og, base_og = shared["z0_og"], shared["base_og"]
|
| 562 |
+
z0_enh, base_enh = shared["z0_enh"], shared["base_enh"]
|
| 563 |
+
vlm_agg_77 = shared["vlm_agg_77"]
|
| 564 |
+
critic: CritiCore = shared["critic"]
|
| 565 |
+
|
| 566 |
+
out: Dict[str, Dict[int, Image.Image]] = {}
|
| 567 |
+
|
| 568 |
+
def _save(im: Image.Image, vname: str, k: int = 0):
|
| 569 |
+
if out_dir is None: return
|
| 570 |
+
sub = out_dir / f"var_{vname}"
|
| 571 |
+
sub.mkdir(parents=True, exist_ok=True)
|
| 572 |
+
im.save(sub / f"{vname}_k{k}.png")
|
| 573 |
+
|
| 574 |
+
# 1) base_multi_llm
|
| 575 |
+
if "base_multi_llm" in enabled:
|
| 576 |
+
v = VARIANT_LABELS["base_multi_llm"]
|
| 577 |
+
out[v] = {0: base_enh}
|
| 578 |
+
_save(base_enh, v, 0)
|
| 579 |
+
|
| 580 |
+
# 2) criticore_on_multi_llm__specfusion
|
| 581 |
+
if "criticore_on_multi_llm__specfusion" in enabled:
|
| 582 |
+
v = VARIANT_LABELS["criticore_on_multi_llm__specfusion"]; out[v] = {}
|
| 583 |
+
refined_on_enh = CritiCore.merge_vlm_multi_text(vlm_agg_77, pos_tags_77)
|
| 584 |
+
|
| 585 |
+
strength = float(strength_for_last_k(lk, total_steps_refine))
|
| 586 |
+
guidance = float(guidance_list[-1]) if guidance_list else float(_guidance_for_k(lk))
|
| 587 |
+
steps = int(total_steps_refine)
|
| 588 |
+
|
| 589 |
+
z_ref = img2img_latent(
|
| 590 |
+
refined_on_enh, z0_enh,
|
| 591 |
+
strength=strength, guidance=guidance, steps=steps,
|
| 592 |
+
seed=seed + 2100 + lk
|
| 593 |
+
)
|
| 594 |
+
fused_lat = frequency_fusion(z_ref, z0_enh, base_c=0.5, rho_t=RHO_T_DEFAULT, device=DEVICE)
|
| 595 |
+
img_sf = _decode_to_pil(fused_lat, SDXL_i2i)
|
| 596 |
+
|
| 597 |
+
out[v][0] = img_sf
|
| 598 |
+
_save(img_sf, v, 0)
|
| 599 |
+
|
| 600 |
+
# 3) base_original
|
| 601 |
+
if "base_original" in enabled:
|
| 602 |
+
v = VARIANT_LABELS["base_original"]
|
| 603 |
+
out[v] = {0: base_og}
|
| 604 |
+
_save(base_og, v, 0)
|
| 605 |
+
|
| 606 |
+
# 4) criticore_on_original__specfusion
|
| 607 |
+
if "criticore_on_original__specfusion" in enabled:
|
| 608 |
+
v = VARIANT_LABELS["criticore_on_original__specfusion"]; out[v] = {}
|
| 609 |
+
|
| 610 |
+
vlm_on_og = await critic.vlm_refine(base_og, user_prompt, comps or [])
|
| 611 |
+
refined_og_77 = clip77_strict(vlm_on_og.get("refined") or user_prompt, 77)
|
| 612 |
+
refined_merge = CritiCore.merge_vlm_multi_text(refined_og_77, pos_tags_77)
|
| 613 |
+
|
| 614 |
+
strength = float(strength_for_last_k(lk, total_steps_refine))
|
| 615 |
+
guidance = float(guidance_list[-1]) if guidance_list else float(_guidance_for_k(lk))
|
| 616 |
+
steps = int(total_steps_refine)
|
| 617 |
+
|
| 618 |
+
z_ref = img2img_latent(
|
| 619 |
+
refined_merge, z0_og,
|
| 620 |
+
strength=strength, guidance=guidance, steps=steps,
|
| 621 |
+
seed=seed + 2400 + lk
|
| 622 |
+
)
|
| 623 |
+
fused_lat = frequency_fusion(z_ref, z0_og, base_c=0.5, rho_t=RHO_T_DEFAULT, device=DEVICE)
|
| 624 |
+
img_sf = _decode_to_pil(fused_lat, SDXL_i2i)
|
| 625 |
+
|
| 626 |
+
out[v][0] = img_sf
|
| 627 |
+
_save(img_sf, v, 0)
|
| 628 |
+
|
| 629 |
+
return out
|
| 630 |
+
|
| 631 |
+
# =========================
|
| 632 |
+
# 8) Full CADR pipeline (kept for your "完整 demo" tab)
|
| 633 |
+
# =========================
|
| 634 |
+
def _try_pref_score(enhanced_prompt: str, base_img: Image.Image) -> Optional[float]:
|
| 635 |
+
fn = globals().get("pref_score", None) # optional external
|
| 636 |
+
if fn is None:
|
| 637 |
+
return None
|
| 638 |
+
try:
|
| 639 |
+
s01 = float(fn(enhanced_prompt, base_img))
|
| 640 |
+
return max(0.0, min(100.0, s01 * 100.0))
|
| 641 |
+
except Exception:
|
| 642 |
+
return None
|
| 643 |
+
|
| 644 |
+
def _clamp01(x: float) -> float: return max(0.0, min(1.0, float(x)))
|
| 645 |
+
def _lerp(a: float, b: float, t: float) -> float: return a + (b - a) * t
|
| 646 |
+
|
| 647 |
+
class SpecFusionCADR:
|
| 648 |
+
def __init__(self, device: torch.device):
|
| 649 |
+
self.device = device
|
| 650 |
+
|
| 651 |
+
@staticmethod
|
| 652 |
+
def cadr_from_alignment(align_score: float) -> Tuple[float, float, int, float]:
|
| 653 |
+
s = _clamp01(align_score / 100.0); mis = 1.0 - s
|
| 654 |
+
strength = _lerp(0.12, 0.30, mis)
|
| 655 |
+
guidance = _lerp(3.6, 5.0, mis)
|
| 656 |
+
steps = int(round(_lerp(16, 30, mis)))
|
| 657 |
+
rho_t = _lerp(0.60, 0.85, mis)
|
| 658 |
+
return strength, guidance, steps, rho_t
|
| 659 |
+
|
| 660 |
+
@torch.no_grad()
|
| 661 |
+
def final_touch(self, enhanced_prompt: str, base_latent: torch.Tensor, align_score: float, seed: int):
|
| 662 |
+
strength, guidance, steps, rho_t = self.cadr_from_alignment(float(align_score))
|
| 663 |
+
z_ref = img2img_latent(enhanced_prompt, base_latent, strength=strength, guidance=guidance, steps=steps, seed=seed)
|
| 664 |
+
fused = frequency_fusion(z_ref, base_latent, base_c=0.5, rho_t=rho_t, device=DEVICE)
|
| 665 |
+
img = decode_image_sdxl(fused, SDXL_i2i)
|
| 666 |
+
return img, dict(strength=strength, guidance=guidance, steps=steps, rho_t=rho_t)
|
| 667 |
+
|
| 668 |
+
async def pipeline_full_cadr(user_prompt: str, seed: int, H: int, W: int, preset: str, align_score: Optional[float], save_dir: Optional[Path]):
|
| 669 |
+
critic = CritiCore(preset=preset)
|
| 670 |
+
spec = SpecFusionCADR(device=DEVICE)
|
| 671 |
+
|
| 672 |
+
z0_base, base_img = base_sample_latent(user_prompt, seed=seed, H=H, W=W, neg=DEFAULT_NEG)
|
| 673 |
+
|
| 674 |
+
pos_tags_77, neg_tags = await critic.make_tags(user_prompt, clip77=True)
|
| 675 |
+
comps = await critic.decompose_components(user_prompt)
|
| 676 |
+
vlm_out = await critic.vlm_refine(base_img, user_prompt, comps or [])
|
| 677 |
+
vlm_ref_77 = vlm_out.get("refined") or user_prompt
|
| 678 |
+
enhanced_77 = CritiCore.merge_vlm_multi_text(vlm_ref_77, pos_tags_77)
|
| 679 |
+
|
| 680 |
+
if align_score is None:
|
| 681 |
+
auto = _try_pref_score(enhanced_77, base_img)
|
| 682 |
+
align_score = auto if auto is not None else 60.0
|
| 683 |
+
|
| 684 |
+
final_img, cadr_params = spec.final_touch(enhanced_77, z0_base, float(align_score), seed=seed+999)
|
| 685 |
+
|
| 686 |
+
meta = {
|
| 687 |
+
"user_prompt": user_prompt,
|
| 688 |
+
"pos_tags_77": pos_tags_77,
|
| 689 |
+
"vlm_refined_77": vlm_ref_77,
|
| 690 |
+
"enhanced_prompt_77": enhanced_77,
|
| 691 |
+
"align_score": float(align_score),
|
| 692 |
+
"cadr_params": cadr_params,
|
| 693 |
+
"components": comps,
|
| 694 |
+
"vlm_issues": vlm_out.get("issues_merged",""),
|
| 695 |
+
}
|
| 696 |
+
meta_json = json.dumps(meta, ensure_ascii=False, indent=2)
|
| 697 |
+
|
| 698 |
+
if save_dir is not None:
|
| 699 |
+
save_dir.mkdir(parents=True, exist_ok=True)
|
| 700 |
+
base_img.save(save_dir / "base.png")
|
| 701 |
+
final_img.save(save_dir / "cadr_final.png")
|
| 702 |
+
(save_dir / "record.json").write_text(meta_json, encoding="utf-8")
|
| 703 |
+
|
| 704 |
+
return base_img, final_img, enhanced_77, meta_json
|
| 705 |
+
|
| 706 |
+
# =========================
|
| 707 |
+
# 9) UI callbacks (reference style)
|
| 708 |
+
# =========================
|
| 709 |
+
def ui_run_once(
|
| 710 |
+
user_prompt: str,
|
| 711 |
+
seed: int,
|
| 712 |
+
H: int,
|
| 713 |
+
W: int,
|
| 714 |
+
preset: str,
|
| 715 |
+
total_steps_refine: int,
|
| 716 |
+
last_k: int,
|
| 717 |
+
guidance: float,
|
| 718 |
+
enabled_variants: List[str],
|
| 719 |
+
save_outputs: bool,
|
| 720 |
+
out_dir: str,
|
| 721 |
+
):
|
| 722 |
+
t0 = time.time()
|
| 723 |
+
try:
|
| 724 |
+
if not user_prompt or not user_prompt.strip():
|
| 725 |
+
return [], "Empty prompt."
|
| 726 |
+
|
| 727 |
+
if not TOGETHER_API_KEY:
|
| 728 |
+
return [], "ERROR: TOGETHER_API_KEY not set."
|
| 729 |
+
|
| 730 |
+
# display -> internal
|
| 731 |
+
display_to_internal = {v: k for k, v in VARIANT_LABELS.items()}
|
| 732 |
+
internal_enabled = [display_to_internal.get(v, v) for v in (enabled_variants or [])]
|
| 733 |
+
|
| 734 |
+
out_path = Path(out_dir) if (save_outputs and out_dir) else None
|
| 735 |
+
if out_path is not None:
|
| 736 |
+
out_path.mkdir(parents=True, exist_ok=True)
|
| 737 |
+
|
| 738 |
+
results = _run_async(generate_variants(
|
| 739 |
+
user_prompt=user_prompt.strip(),
|
| 740 |
+
seed=int(seed),
|
| 741 |
+
H=int(H), W=int(W),
|
| 742 |
+
total_steps_refine=int(total_steps_refine),
|
| 743 |
+
last_k_list=(int(last_k),),
|
| 744 |
+
guidance_list=[float(guidance)] if guidance > 0 else None,
|
| 745 |
+
preset=preset,
|
| 746 |
+
out_dir=out_path,
|
| 747 |
+
enabled_variants=internal_enabled,
|
| 748 |
+
))
|
| 749 |
+
|
| 750 |
+
gallery = []
|
| 751 |
+
for name in VARIANT_ORDER:
|
| 752 |
+
if name in results and 0 in results[name]:
|
| 753 |
+
gallery.append((results[name][0], name))
|
| 754 |
+
|
| 755 |
+
try:
|
| 756 |
+
meta = _run_async(_collect_meta(user_prompt.strip(), int(seed), int(H), int(W), preset))
|
| 757 |
+
except Exception as e:
|
| 758 |
+
meta = {"meta_error": str(e)}
|
| 759 |
+
|
| 760 |
+
meta["ui"] = {
|
| 761 |
+
"seed": int(seed),
|
| 762 |
+
"H": int(H),
|
| 763 |
+
"W": int(W),
|
| 764 |
+
"preset": preset,
|
| 765 |
+
"total_steps_refine": int(total_steps_refine),
|
| 766 |
+
"last_k": int(last_k),
|
| 767 |
+
"guidance": float(guidance),
|
| 768 |
+
"enabled_variants": enabled_variants,
|
| 769 |
+
"save_outputs": bool(save_outputs),
|
| 770 |
+
"out_dir": out_dir if save_outputs else None,
|
| 771 |
+
}
|
| 772 |
+
meta["elapsed_sec"] = round(time.time() - t0, 3)
|
| 773 |
+
|
| 774 |
+
return gallery, json.dumps(meta, ensure_ascii=False, indent=2)
|
| 775 |
+
|
| 776 |
+
except Exception:
|
| 777 |
+
return [], traceback.format_exc()
|
| 778 |
+
|
| 779 |
+
def ui_run_full(
|
| 780 |
+
user_prompt: str,
|
| 781 |
+
seed: int,
|
| 782 |
+
H: int,
|
| 783 |
+
W: int,
|
| 784 |
+
preset: str,
|
| 785 |
+
align_mode: str,
|
| 786 |
+
align_score: float,
|
| 787 |
+
save_outputs: bool,
|
| 788 |
+
out_dir: str,
|
| 789 |
+
):
|
| 790 |
+
try:
|
| 791 |
+
if not user_prompt or not user_prompt.strip():
|
| 792 |
+
return None, None, "", "Empty prompt."
|
| 793 |
+
if not TOGETHER_API_KEY:
|
| 794 |
+
return None, None, "", "ERROR: TOGETHER_API_KEY not set."
|
| 795 |
+
|
| 796 |
+
save_dir = Path(out_dir) if (save_outputs and out_dir) else None
|
| 797 |
+
a = None if align_mode.startswith("Auto") else float(align_score)
|
| 798 |
+
|
| 799 |
+
base_img, final_img, enhanced_77, meta_json = _run_async(
|
| 800 |
+
pipeline_full_cadr(
|
| 801 |
+
user_prompt=user_prompt.strip(),
|
| 802 |
+
seed=int(seed), H=int(H), W=int(W),
|
| 803 |
+
preset=preset,
|
| 804 |
+
align_score=a,
|
| 805 |
+
save_dir=save_dir,
|
| 806 |
+
)
|
| 807 |
+
)
|
| 808 |
+
return base_img, final_img, enhanced_77, meta_json
|
| 809 |
+
except Exception:
|
| 810 |
+
return None, None, "", traceback.format_exc()
|
| 811 |
+
|
| 812 |
+
# =========================
|
| 813 |
+
# 10) Gradio UI (matches your reference fixes)
|
| 814 |
+
# =========================
|
| 815 |
+
with gr.Blocks(title="CritiFusion (SDXL) Demo", theme=gr.themes.Soft()) as demo:
|
| 816 |
+
gr.Markdown(
|
| 817 |
+
"## CritiFusion Demo (SDXL)\n"
|
| 818 |
+
"- You can run **Variants** (outputs 4 variants in one click).\n"
|
| 819 |
+
"- You can also run the **Full CADR Pipeline** (end-to-end).\n"
|
| 820 |
+
f"- Device: **{DEVICE_STR}**, DType: **{DTYPE}**\n"
|
| 821 |
+
f"- Together API: {'✅ set' if TOGETHER_API_KEY else '❌ missing (set TOGETHER_API_KEY)'}"
|
| 822 |
+
)
|
| 823 |
+
|
| 824 |
+
with gr.Tabs():
|
| 825 |
+
with gr.Tab("Variants (Run Once)"):
|
| 826 |
+
with gr.Row():
|
| 827 |
+
with gr.Column(scale=7):
|
| 828 |
+
user_prompt = gr.Textbox(
|
| 829 |
+
label="Prompt",
|
| 830 |
+
value="A fluffy orange cat lying on a window ledge, front-facing, stylized in 3D Pixar look, soft indoor lighting",
|
| 831 |
+
lines=3,
|
| 832 |
+
)
|
| 833 |
+
with gr.Row():
|
| 834 |
+
seed = gr.Number(label="Seed", value=2026, precision=0)
|
| 835 |
+
preset = gr.Dropdown(label="Preset", choices=["hq_preference"], value="hq_preference")
|
| 836 |
+
with gr.Row():
|
| 837 |
+
H = gr.Number(label="H", value=1024, precision=0)
|
| 838 |
+
W = gr.Number(label="W", value=1024, precision=0)
|
| 839 |
+
with gr.Row():
|
| 840 |
+
total_steps_refine = gr.Slider(label="total_steps_refine", minimum=10, maximum=80, step=1, value=50)
|
| 841 |
+
last_k = gr.Slider(label="last_k", minimum=1, maximum=50, step=1, value=37)
|
| 842 |
+
guidance = gr.Slider(label="Guidance (0 => fallback rule)", minimum=0.0, maximum=15.0, step=0.1, value=0.0)
|
| 843 |
+
|
| 844 |
+
enabled_variants = gr.CheckboxGroup(
|
| 845 |
+
label="Enabled Variants",
|
| 846 |
+
choices=[VARIANT_LABELS[k] for k in VARIANT_LABELS.keys()],
|
| 847 |
+
value=[
|
| 848 |
+
VARIANT_LABELS["base_original"],
|
| 849 |
+
VARIANT_LABELS["base_multi_llm"],
|
| 850 |
+
VARIANT_LABELS["criticore_on_original__specfusion"],
|
| 851 |
+
VARIANT_LABELS["criticore_on_multi_llm__specfusion"],
|
| 852 |
+
],
|
| 853 |
+
)
|
| 854 |
+
|
| 855 |
+
with gr.Row():
|
| 856 |
+
save_outputs = gr.Checkbox(label="Save outputs to disk", value=False)
|
| 857 |
+
out_dir = gr.Textbox(label="Output dir (only if save enabled)", value="./variants_demo_gradio")
|
| 858 |
+
|
| 859 |
+
run_btn = gr.Button("Run", variant="primary")
|
| 860 |
+
|
| 861 |
+
with gr.Column(scale=8):
|
| 862 |
+
gallery = gr.Gallery(label="Results", columns=2, height=600)
|
| 863 |
+
meta_json = gr.Code(label="Meta / Debug (JSON)", language="json")
|
| 864 |
+
|
| 865 |
+
run_btn.click(
|
| 866 |
+
fn=ui_run_once,
|
| 867 |
+
inputs=[user_prompt, seed, H, W, preset, total_steps_refine, last_k, guidance, enabled_variants, save_outputs, out_dir],
|
| 868 |
+
outputs=[gallery, meta_json],
|
| 869 |
+
api_name=False,
|
| 870 |
+
show_api=False,
|
| 871 |
+
)
|
| 872 |
+
|
| 873 |
+
with gr.Tab("Full CADR Pipeline"):
|
| 874 |
+
with gr.Row():
|
| 875 |
+
with gr.Column(scale=7):
|
| 876 |
+
p2 = gr.Textbox(
|
| 877 |
+
label="Prompt",
|
| 878 |
+
value="A fluffy orange cat lying on a window ledge, front-facing, stylized in 3D Pixar look, soft indoor lighting",
|
| 879 |
+
lines=3,
|
| 880 |
+
)
|
| 881 |
+
with gr.Row():
|
| 882 |
+
seed2 = gr.Number(label="Seed", value=2026, precision=0)
|
| 883 |
+
preset2 = gr.Dropdown(label="Preset", choices=["hq_preference"], value="hq_preference")
|
| 884 |
+
with gr.Row():
|
| 885 |
+
H2 = gr.Number(label="H", value=1024, precision=0)
|
| 886 |
+
W2 = gr.Number(label="W", value=1024, precision=0)
|
| 887 |
+
|
| 888 |
+
align_mode = gr.Radio(
|
| 889 |
+
label="Alignment score source",
|
| 890 |
+
choices=["Auto (pref_score if available else 60)", "Manual (use slider below)"],
|
| 891 |
+
value="Auto (pref_score if available else 60)",
|
| 892 |
+
)
|
| 893 |
+
align_score = gr.Slider(label="Manual align_score (0..100)", minimum=0, maximum=100, step=1, value=60)
|
| 894 |
+
|
| 895 |
+
with gr.Row():
|
| 896 |
+
save2 = gr.Checkbox(label="Save outputs to disk", value=False)
|
| 897 |
+
out2 = gr.Textbox(label="Output dir (only if save enabled)", value="./full_cadr_gradio")
|
| 898 |
+
|
| 899 |
+
run2 = gr.Button("Run Full CADR", variant="primary")
|
| 900 |
+
|
| 901 |
+
with gr.Column(scale=8):
|
| 902 |
+
base_img = gr.Image(label="Base", type="pil")
|
| 903 |
+
final_img = gr.Image(label="Final (CADR + SpecFusion)", type="pil")
|
| 904 |
+
enhanced = gr.Textbox(label="Enhanced prompt (≤77)", lines=3)
|
| 905 |
+
meta2 = gr.Code(label="Meta / Debug (JSON)", language="json")
|
| 906 |
+
|
| 907 |
+
run2.click(
|
| 908 |
+
fn=ui_run_full,
|
| 909 |
+
inputs=[p2, seed2, H2, W2, preset2, align_mode, align_score, save2, out2],
|
| 910 |
+
outputs=[base_img, final_img, enhanced, meta2],
|
| 911 |
+
api_name=False,
|
| 912 |
+
show_api=False,
|
| 913 |
+
)
|
| 914 |
+
|
| 915 |
+
# IMPORTANT: share=True fixes "localhost not accessible"
|
| 916 |
+
demo.queue().launch(debug=True, share=True, max_threads=1, show_api=False)
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.44.0
|
| 2 |
+
torch
|
| 3 |
+
diffusers>=0.30.0
|
| 4 |
+
transformers>=4.43.0
|
| 5 |
+
accelerate
|
| 6 |
+
safetensors
|
| 7 |
+
huggingface_hub
|
| 8 |
+
pillow
|
| 9 |
+
numpy
|
| 10 |
+
together
|
| 11 |
+
nest_asyncio
|