Spaces:
Sleeping
Sleeping
| from torch import Tensor | |
| from transformers import AutoTokenizer, AutoModel | |
| from typing import Union | |
| from fastapi import FastAPI | |
| from pydantic import BaseModel | |
| def average_pool(last_hidden_states: Tensor, | |
| attention_mask: Tensor) -> Tensor: | |
| last_hidden = last_hidden_states.masked_fill( | |
| ~attention_mask[..., None].bool(), 0.0) | |
| return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] | |
| # text-ada replacement | |
| embeddingTokenizer = AutoTokenizer.from_pretrained( | |
| './multilingual-e5-base') | |
| embeddingModel = AutoModel.from_pretrained('./multilingual-e5-base') | |
| class EmbeddingRequest(BaseModel): | |
| input: Union[str, None] = None | |
| app = FastAPI() | |
| async def root(): | |
| return {"message": "Hello World"} | |
| async def text_embedding(request: EmbeddingRequest): | |
| input = request.input | |
| # Process the input data | |
| batch_dict = embeddingTokenizer([input], max_length=512, | |
| padding=True, truncation=True, return_tensors='pt') | |
| outputs = embeddingModel(**batch_dict) | |
| embeddings = average_pool(outputs.last_hidden_state, | |
| batch_dict['attention_mask']) | |
| # create response | |
| return { | |
| 'embedding': embeddings[0].tolist() | |
| } | |