Spaces:
Paused
Paused
| from transformers import pipeline | |
| from datasets import load_dataset | |
| import soundfile as sf | |
| import torch | |
| synthesiser = pipeline("text-to-speech", "microsoft/speecht5_tts") | |
| def text_to_audio(text): | |
| # clean the response and max_size is 600 | |
| text_clean = text.replace('\n', '').replace('*', '') | |
| text_550 = text_clean[:590] | |
| # get speaker embeddings | |
| embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
| speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
| # You can replace this embedding with your own as well. | |
| speech = synthesiser(text_550, forward_params={"speaker_embeddings": speaker_embedding}) | |
| sf.write("output.wav", speech["audio"], samplerate=speech["sampling_rate"]) | |
| audio_file = open("output.wav", "rb") | |
| audio_bytes = audio_file.read() | |
| return audio_bytes | |