Spaces:
Paused
Paused
| from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
| import torchaudio | |
| # load model and processor | |
| processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") | |
| model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") | |
| model.config.forced_decoder_ids = None | |
| def audio_to_text(file_path_abs): | |
| # Load the audio and resample it | |
| waveform, sample_rate = torchaudio.load(file_path_abs) | |
| resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) | |
| waveform = resampler(waveform) | |
| waveform = waveform.squeeze().numpy() | |
| input_features = processor(waveform, sampling_rate=16000, return_tensors="pt").input_features | |
| # generate token ids | |
| predicted_ids = model.generate(input_features) | |
| # decode token ids to text | |
| transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
| return transcription | |