Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
add1856
1
Parent(s):
491977c
Revert "Use local text encoders instead of remote service"
Browse filesThis reverts commit b07ac298ee4fd266049b29c24fa576fba90e4d0f.
app.py
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
| 2 |
import io
|
| 3 |
import re
|
| 4 |
import gradio as gr
|
|
@@ -6,11 +8,16 @@ import numpy as np
|
|
| 6 |
import random
|
| 7 |
import spaces
|
| 8 |
import torch
|
| 9 |
-
from diffusers import Flux2Pipeline
|
|
|
|
|
|
|
| 10 |
from PIL import Image
|
|
|
|
| 11 |
import base64
|
| 12 |
from huggingface_hub import InferenceClient
|
| 13 |
|
|
|
|
|
|
|
| 14 |
dtype = torch.bfloat16
|
| 15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
|
|
@@ -44,11 +51,32 @@ Rules:
|
|
| 44 |
|
| 45 |
Output only the final instruction in plain text and nothing else."""
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
repo_id = "black-forest-labs/FLUX.2-dev"
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
pipe = Flux2Pipeline.from_pretrained(
|
| 51 |
repo_id,
|
|
|
|
|
|
|
| 52 |
torch_dtype=torch.bfloat16
|
| 53 |
)
|
| 54 |
pipe.to(device)
|
|
@@ -131,17 +159,20 @@ def update_dimensions_from_image(image_list):
|
|
| 131 |
return new_width, new_height
|
| 132 |
|
| 133 |
# Updated duration function to match generate_image arguments (including progress)
|
| 134 |
-
def get_duration(
|
| 135 |
num_images = 0 if image_list is None else len(image_list)
|
| 136 |
step_duration = 1 + 0.8 * num_images
|
| 137 |
-
return max(
|
| 138 |
|
| 139 |
@spaces.GPU(duration=get_duration)
|
| 140 |
-
def generate_image(
|
|
|
|
|
|
|
|
|
|
| 141 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 142 |
-
|
| 143 |
pipe_kwargs = {
|
| 144 |
-
"
|
| 145 |
"image": image_list,
|
| 146 |
"num_inference_steps": num_inference_steps,
|
| 147 |
"guidance_scale": guidance_scale,
|
|
@@ -149,11 +180,11 @@ def generate_image(prompt, image_list, width, height, num_inference_steps, guida
|
|
| 149 |
"width": width,
|
| 150 |
"height": height,
|
| 151 |
}
|
| 152 |
-
|
| 153 |
# Progress bar for the actual generation steps
|
| 154 |
if progress:
|
| 155 |
-
progress(0, desc="
|
| 156 |
-
|
| 157 |
image = pipe(**pipe_kwargs).images[0]
|
| 158 |
return image
|
| 159 |
|
|
@@ -180,10 +211,14 @@ def infer(prompt, aspect_ratio="1:1 (1024x1024)", progress=gr.Progress(track_tqd
|
|
| 180 |
num_inference_steps = 30
|
| 181 |
guidance_scale = 4.0
|
| 182 |
|
| 183 |
-
#
|
| 184 |
-
progress(0.1, desc="
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
image = generate_image(
|
| 186 |
-
|
| 187 |
None, # No input images
|
| 188 |
width,
|
| 189 |
height,
|
|
|
|
| 1 |
import os
|
| 2 |
+
import subprocess
|
| 3 |
+
import sys
|
| 4 |
import io
|
| 5 |
import re
|
| 6 |
import gradio as gr
|
|
|
|
| 8 |
import random
|
| 9 |
import spaces
|
| 10 |
import torch
|
| 11 |
+
from diffusers import Flux2Pipeline, Flux2Transformer2DModel
|
| 12 |
+
from diffusers import BitsAndBytesConfig as DiffBitsAndBytesConfig
|
| 13 |
+
import requests
|
| 14 |
from PIL import Image
|
| 15 |
+
import json
|
| 16 |
import base64
|
| 17 |
from huggingface_hub import InferenceClient
|
| 18 |
|
| 19 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "spaces==0.43.0"])
|
| 20 |
+
|
| 21 |
dtype = torch.bfloat16
|
| 22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
|
|
|
|
| 51 |
|
| 52 |
Output only the final instruction in plain text and nothing else."""
|
| 53 |
|
| 54 |
+
def remote_text_encoder(prompts):
|
| 55 |
+
from gradio_client import Client
|
| 56 |
+
|
| 57 |
+
client = Client("multimodalart/mistral-text-encoder")
|
| 58 |
+
result = client.predict(
|
| 59 |
+
prompt=prompts,
|
| 60 |
+
api_name="/encode_text"
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Load returns a tensor, usually on CPU by default
|
| 64 |
+
prompt_embeds = torch.load(result[0])
|
| 65 |
+
return prompt_embeds
|
| 66 |
+
|
| 67 |
+
# Load model
|
| 68 |
repo_id = "black-forest-labs/FLUX.2-dev"
|
| 69 |
|
| 70 |
+
dit = Flux2Transformer2DModel.from_pretrained(
|
| 71 |
+
repo_id,
|
| 72 |
+
subfolder="transformer",
|
| 73 |
+
torch_dtype=torch.bfloat16
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
pipe = Flux2Pipeline.from_pretrained(
|
| 77 |
repo_id,
|
| 78 |
+
text_encoder=None,
|
| 79 |
+
transformer=dit,
|
| 80 |
torch_dtype=torch.bfloat16
|
| 81 |
)
|
| 82 |
pipe.to(device)
|
|
|
|
| 159 |
return new_width, new_height
|
| 160 |
|
| 161 |
# Updated duration function to match generate_image arguments (including progress)
|
| 162 |
+
def get_duration(prompt_embeds, image_list, width, height, num_inference_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
|
| 163 |
num_images = 0 if image_list is None else len(image_list)
|
| 164 |
step_duration = 1 + 0.8 * num_images
|
| 165 |
+
return max(65, num_inference_steps * step_duration + 10)
|
| 166 |
|
| 167 |
@spaces.GPU(duration=get_duration)
|
| 168 |
+
def generate_image(prompt_embeds, image_list, width, height, num_inference_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
|
| 169 |
+
# Move embeddings to GPU only when inside the GPU decorated function
|
| 170 |
+
prompt_embeds = prompt_embeds.to(device)
|
| 171 |
+
|
| 172 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 173 |
+
|
| 174 |
pipe_kwargs = {
|
| 175 |
+
"prompt_embeds": prompt_embeds,
|
| 176 |
"image": image_list,
|
| 177 |
"num_inference_steps": num_inference_steps,
|
| 178 |
"guidance_scale": guidance_scale,
|
|
|
|
| 180 |
"width": width,
|
| 181 |
"height": height,
|
| 182 |
}
|
| 183 |
+
|
| 184 |
# Progress bar for the actual generation steps
|
| 185 |
if progress:
|
| 186 |
+
progress(0, desc="Starting generation...")
|
| 187 |
+
|
| 188 |
image = pipe(**pipe_kwargs).images[0]
|
| 189 |
return image
|
| 190 |
|
|
|
|
| 211 |
num_inference_steps = 30
|
| 212 |
guidance_scale = 4.0
|
| 213 |
|
| 214 |
+
# Text Encoding (Network bound - No GPU needed)
|
| 215 |
+
progress(0.1, desc="Encoding prompt...")
|
| 216 |
+
prompt_embeds = remote_text_encoder(prompt)
|
| 217 |
+
|
| 218 |
+
# Image Generation (GPU bound)
|
| 219 |
+
progress(0.3, desc="Generating image...")
|
| 220 |
image = generate_image(
|
| 221 |
+
prompt_embeds,
|
| 222 |
None, # No input images
|
| 223 |
width,
|
| 224 |
height,
|