Update
Browse files
app.py
CHANGED
|
@@ -1,24 +1,34 @@
|
|
| 1 |
import torch
|
| 2 |
import torch.nn.functional as F
|
| 3 |
import gradio as gr
|
| 4 |
-
from transformers import CLIPProcessor, CLIPModel
|
| 5 |
import spaces
|
| 6 |
|
| 7 |
-
# Dictionary of available
|
| 8 |
-
|
| 9 |
-
"ViT-B/32": ("openai/clip-vit-base-patch32", 224),
|
| 10 |
-
"ViT-B/16": ("openai/clip-vit-base-patch16", 224),
|
| 11 |
-
"ViT-L/14": ("openai/clip-vit-large-patch14", 224),
|
| 12 |
-
"ViT-L/14@336px": ("openai/clip-vit-large-patch14-336", 336),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
}
|
| 14 |
|
| 15 |
# Initialize models and processors
|
| 16 |
models = {}
|
| 17 |
processors = {}
|
| 18 |
|
| 19 |
-
for model_name, (model_path, _) in
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
@spaces.GPU
|
| 24 |
def calculate_score(image, text, model_name):
|
|
@@ -27,63 +37,76 @@ def calculate_score(image, text, model_name):
|
|
| 27 |
labels = list(filter(None, labels))
|
| 28 |
if len(labels) == 0:
|
| 29 |
return dict()
|
| 30 |
-
|
| 31 |
model = models[model_name]
|
| 32 |
processor = processors[model_name]
|
| 33 |
-
|
|
|
|
| 34 |
# Preprocess the image and text
|
| 35 |
inputs = processor(text=labels, images=[image], return_tensors="pt", padding=True)
|
| 36 |
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
| 37 |
-
|
| 38 |
# Calculate embeddings
|
| 39 |
with torch.no_grad():
|
| 40 |
outputs = model(**inputs)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
# Normalize embeddings
|
| 45 |
image_embeds = F.normalize(image_embeds, p=2, dim=1)
|
| 46 |
text_embeds = F.normalize(text_embeds, p=2, dim=1)
|
| 47 |
-
|
| 48 |
# Calculate cosine similarity
|
| 49 |
cosine_similarities = torch.mm(text_embeds, image_embeds.t()).squeeze(1)
|
| 50 |
-
|
| 51 |
-
#
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
| 55 |
return results_dict
|
| 56 |
|
|
|
|
| 57 |
with gr.Blocks() as demo:
|
| 58 |
-
gr.Markdown("# Multi-Model CLIP Score")
|
| 59 |
-
gr.Markdown(
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
with gr.Row():
|
| 62 |
image_input = gr.Image(type="pil")
|
| 63 |
output_label = gr.Label()
|
| 64 |
-
|
| 65 |
with gr.Row():
|
| 66 |
text_input = gr.Textbox(label="Descriptions (separated by semicolons)")
|
| 67 |
-
model_dropdown = gr.Dropdown(
|
| 68 |
-
|
|
|
|
|
|
|
| 69 |
def process_inputs(image, text, model_name):
|
| 70 |
if image is None or text.strip() == "":
|
| 71 |
return None
|
| 72 |
return calculate_score(image, text, model_name)
|
| 73 |
-
|
| 74 |
inputs = [image_input, text_input, model_dropdown]
|
| 75 |
outputs = output_label
|
| 76 |
-
|
| 77 |
image_input.change(fn=process_inputs, inputs=inputs, outputs=outputs)
|
| 78 |
text_input.submit(fn=process_inputs, inputs=inputs, outputs=outputs)
|
| 79 |
model_dropdown.change(fn=process_inputs, inputs=inputs, outputs=outputs)
|
| 80 |
-
|
| 81 |
gr.Examples(
|
| 82 |
examples=[
|
| 83 |
[
|
| 84 |
"cat.jpg",
|
| 85 |
"a cat stuck in a door; a cat in the air; a cat sitting; a cat standing; a cat is entering the matrix; a cat is entering the void",
|
| 86 |
-
"ViT-B/16"
|
| 87 |
]
|
| 88 |
],
|
| 89 |
fn=process_inputs,
|
|
@@ -91,4 +114,4 @@ with gr.Blocks() as demo:
|
|
| 91 |
outputs=outputs,
|
| 92 |
)
|
| 93 |
|
| 94 |
-
demo.launch()
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn.functional as F
|
| 3 |
import gradio as gr
|
| 4 |
+
from transformers import CLIPProcessor, CLIPModel, AutoProcessor, AutoModel
|
| 5 |
import spaces
|
| 6 |
|
| 7 |
+
# Dictionary of available models with their image sizes
|
| 8 |
+
MODELS = {
|
| 9 |
+
"CLIP ViT-B/32": ("openai/clip-vit-base-patch32", 224, "clip"),
|
| 10 |
+
"CLIP ViT-B/16": ("openai/clip-vit-base-patch16", 224, "clip"),
|
| 11 |
+
"CLIP ViT-L/14": ("openai/clip-vit-large-patch14", 224, "clip"),
|
| 12 |
+
"CLIP ViT-L/14@336px": ("openai/clip-vit-large-patch14-336", 336, "clip"),
|
| 13 |
+
"SigLIP SO400M/14-384": ("google/siglip-so400m-patch14-384", 384, "siglip"),
|
| 14 |
+
"SigLIP Large/16-256": ("google/siglip-large-patch16-256", 256, "siglip"),
|
| 15 |
+
"SigLIP SO400M/14-224": ("google/siglip-so400m-patch14-224", 224, "siglip"),
|
| 16 |
+
"SigLIP Base/16-384": ("google/siglip-base-patch16-384", 384, "siglip"),
|
| 17 |
+
"SigLIP Large/16-384": ("google/siglip-large-patch16-384", 384, "siglip"),
|
| 18 |
}
|
| 19 |
|
| 20 |
# Initialize models and processors
|
| 21 |
models = {}
|
| 22 |
processors = {}
|
| 23 |
|
| 24 |
+
for model_name, (model_path, _, model_type) in MODELS.items():
|
| 25 |
+
if model_type == "clip":
|
| 26 |
+
models[model_name] = CLIPModel.from_pretrained(model_path).to("cuda")
|
| 27 |
+
processors[model_name] = CLIPProcessor.from_pretrained(model_path)
|
| 28 |
+
elif model_type == "siglip":
|
| 29 |
+
models[model_name] = AutoModel.from_pretrained(model_path).to("cuda")
|
| 30 |
+
processors[model_name] = AutoProcessor.from_pretrained(model_path)
|
| 31 |
+
|
| 32 |
|
| 33 |
@spaces.GPU
|
| 34 |
def calculate_score(image, text, model_name):
|
|
|
|
| 37 |
labels = list(filter(None, labels))
|
| 38 |
if len(labels) == 0:
|
| 39 |
return dict()
|
| 40 |
+
|
| 41 |
model = models[model_name]
|
| 42 |
processor = processors[model_name]
|
| 43 |
+
model_type = MODELS[model_name][2]
|
| 44 |
+
|
| 45 |
# Preprocess the image and text
|
| 46 |
inputs = processor(text=labels, images=[image], return_tensors="pt", padding=True)
|
| 47 |
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
| 48 |
+
|
| 49 |
# Calculate embeddings
|
| 50 |
with torch.no_grad():
|
| 51 |
outputs = model(**inputs)
|
| 52 |
+
if model_type == "clip":
|
| 53 |
+
image_embeds = outputs.image_embeds
|
| 54 |
+
text_embeds = outputs.text_embeds
|
| 55 |
+
elif model_type == "siglip":
|
| 56 |
+
image_embeds = outputs.image_embeds
|
| 57 |
+
text_embeds = outputs.text_embeds
|
| 58 |
+
|
| 59 |
# Normalize embeddings
|
| 60 |
image_embeds = F.normalize(image_embeds, p=2, dim=1)
|
| 61 |
text_embeds = F.normalize(text_embeds, p=2, dim=1)
|
| 62 |
+
|
| 63 |
# Calculate cosine similarity
|
| 64 |
cosine_similarities = torch.mm(text_embeds, image_embeds.t()).squeeze(1)
|
| 65 |
+
|
| 66 |
+
# Ensure values are between 0 and 1
|
| 67 |
+
cosine_similarities = torch.clamp(cosine_similarities, min=0, max=1)
|
| 68 |
+
|
| 69 |
+
# Convert to numpy array
|
| 70 |
+
similarities = cosine_similarities.cpu().numpy()
|
| 71 |
+
|
| 72 |
+
results_dict = {label: float(score) for label, score in zip(labels, similarities)}
|
| 73 |
return results_dict
|
| 74 |
|
| 75 |
+
|
| 76 |
with gr.Blocks() as demo:
|
| 77 |
+
gr.Markdown("# Multi-Model CLIP and SigLIP Score")
|
| 78 |
+
gr.Markdown(
|
| 79 |
+
"Calculate the score (cosine similarity) between the given image and text descriptions using different CLIP and SigLIP model variants"
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
with gr.Row():
|
| 83 |
image_input = gr.Image(type="pil")
|
| 84 |
output_label = gr.Label()
|
| 85 |
+
|
| 86 |
with gr.Row():
|
| 87 |
text_input = gr.Textbox(label="Descriptions (separated by semicolons)")
|
| 88 |
+
model_dropdown = gr.Dropdown(
|
| 89 |
+
choices=list(MODELS.keys()), label="Model", value="CLIP ViT-B/16"
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
def process_inputs(image, text, model_name):
|
| 93 |
if image is None or text.strip() == "":
|
| 94 |
return None
|
| 95 |
return calculate_score(image, text, model_name)
|
| 96 |
+
|
| 97 |
inputs = [image_input, text_input, model_dropdown]
|
| 98 |
outputs = output_label
|
| 99 |
+
|
| 100 |
image_input.change(fn=process_inputs, inputs=inputs, outputs=outputs)
|
| 101 |
text_input.submit(fn=process_inputs, inputs=inputs, outputs=outputs)
|
| 102 |
model_dropdown.change(fn=process_inputs, inputs=inputs, outputs=outputs)
|
| 103 |
+
|
| 104 |
gr.Examples(
|
| 105 |
examples=[
|
| 106 |
[
|
| 107 |
"cat.jpg",
|
| 108 |
"a cat stuck in a door; a cat in the air; a cat sitting; a cat standing; a cat is entering the matrix; a cat is entering the void",
|
| 109 |
+
"CLIP ViT-B/16",
|
| 110 |
]
|
| 111 |
],
|
| 112 |
fn=process_inputs,
|
|
|
|
| 114 |
outputs=outputs,
|
| 115 |
)
|
| 116 |
|
| 117 |
+
demo.launch()
|