Update app.py
Browse files
app.py
CHANGED
|
@@ -40,13 +40,15 @@ def CTXGen(X0, X1, X2, τ, g_num, model_name):
|
|
| 40 |
msa_data = pd.read_csv('conoData_C0.csv')
|
| 41 |
msa = msa_data['Sequences'].tolist()
|
| 42 |
msa = [x for x in msa if x.startswith(f"{X1}|{X2}")]
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
| 50 |
model.eval()
|
| 51 |
with torch.no_grad():
|
| 52 |
new_seq = None
|
|
@@ -74,7 +76,7 @@ def CTXGen(X0, X1, X2, τ, g_num, model_name):
|
|
| 74 |
logits_parent = model(torch.tensor([input_ids_parent]).to(device), idx_msaseq_parent)
|
| 75 |
|
| 76 |
cls_mask_logits_parent = logits_parent[0, 1, :]
|
| 77 |
-
cls_probability_parent, cls_mask_probs_parent = torch.topk((torch.softmax(cls_mask_logits_parent, dim=-1)), k=
|
| 78 |
|
| 79 |
seqseq_parent[2] = "[MASK]"
|
| 80 |
input_ids_parent = vocab_mlm.__getitem__(seqseq_parent)
|
|
|
|
| 40 |
msa_data = pd.read_csv('conoData_C0.csv')
|
| 41 |
msa = msa_data['Sequences'].tolist()
|
| 42 |
msa = [x for x in msa if x.startswith(f"{X1}|{X2}")]
|
| 43 |
+
if not msa:
|
| 44 |
+
X4 = ""
|
| 45 |
+
X5 = ""
|
| 46 |
+
X6 = ""
|
| 47 |
+
else:
|
| 48 |
+
msa = random.choice(msa)
|
| 49 |
+
X4 = msa.split("|")[3]
|
| 50 |
+
X5 = msa.split("|")[4]
|
| 51 |
+
X6 = msa.split("|")[5]
|
| 52 |
model.eval()
|
| 53 |
with torch.no_grad():
|
| 54 |
new_seq = None
|
|
|
|
| 76 |
logits_parent = model(torch.tensor([input_ids_parent]).to(device), idx_msaseq_parent)
|
| 77 |
|
| 78 |
cls_mask_logits_parent = logits_parent[0, 1, :]
|
| 79 |
+
cls_probability_parent, cls_mask_probs_parent = torch.topk((torch.softmax(cls_mask_logits_parent, dim=-1)), k=53)
|
| 80 |
|
| 81 |
seqseq_parent[2] = "[MASK]"
|
| 82 |
input_ids_parent = vocab_mlm.__getitem__(seqseq_parent)
|