allycat / 4_query.py
niloydebbarma's picture
Upload 50 files
a7d2416 verified
"""
Vector RAG Query
"""
import os
from my_config import MY_CONFIG
# If connection to https://huggingface.co/ failed, uncomment the following path
os.environ['HF_ENDPOINT'] = MY_CONFIG.HF_ENDPOINT
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.milvus import MilvusVectorStore
from dotenv import load_dotenv
from llama_index.llms.litellm import LiteLLM
import query_utils
import time
import logging
import json
# Create logs directory if it doesn't exist
os.makedirs('logs/query', exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('logs/query/query_log.txt', mode='a'), # Save to file
logging.StreamHandler() # Also show in console
],
force=True
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
def run_query(query: str):
global query_engine
logger.info("-----------------------------------")
start_time = time.time()
query = query_utils.tweak_query(query, MY_CONFIG.LLM_MODEL)
logger.info (f"\nProcessing Query:\n{query}")
# Get initial vector response
vector_response = query_engine.query(query)
vector_text = str(vector_response).strip()
# Structured prompt
structured_prompt = f"""Please provide a comprehensive, well-structured answer using the provided document information.
Question: {query}
Document Information:
{vector_text}
Instructions:
1. Provide accurate, factual information based on the documents
2. Structure your response clearly with proper formatting
3. Be comprehensive yet concise
4. Highlight key relationships and important details when relevant
5. Use bullet points or sections when appropriate for clarity
Please provide your answer:"""
# Use structured prompt for final synthesis
res = query_engine.query(structured_prompt)
end_time = time.time()
total_time = end_time - start_time
logger.info ( "-------"
+ f"\nResponse:\n{res}"
+ f"\n\n⏱️ Total time: {total_time:.1f} seconds"
+ f"\n\nResponse Metadata:\n{json.dumps(res.metadata, indent=2)}"
+ f"\nSource Nodes: {[node.node_id for node in res.source_nodes]}"
)
logger.info("-----------------------------------")
# Save response and metadata to files
_save_query_files(query, res, total_time)
return res
def _save_query_files(query: str, response, total_time: float):
"""Save query response and metadata to files."""
import time
timestamp = time.strftime('%Y-%m-%d %H:%M:%S')
try:
# Save response to file
with open('logs/query/query_responses.txt', 'a', encoding='utf-8') as f:
f.write(f"\n{'='*80}\n")
f.write(f"QUERY [{timestamp}]: {query}\n")
f.write(f"{'='*80}\n")
f.write(f"RESPONSE: {response}\n")
f.write(f"TIME: {total_time:.1f} seconds\n")
f.write(f"{'='*80}\n\n")
# Save metadata to file
with open('logs/query/query_metadata.txt', 'a', encoding='utf-8') as f:
f.write(f"\n{'='*80}\n")
f.write(f"METADATA [{timestamp}]: {query}\n")
f.write(f"{'='*80}\n")
f.write(f"TIME: {total_time:.1f} seconds\n")
f.write(json.dumps(response.metadata, indent=2, default=str))
f.write(f"\n{'='*80}\n\n")
logger.info(f"Saved response and metadata for query: {query[:50]}...")
except Exception as e:
logger.error(f"Failed to save query files: {e}")
## ======= end : run_query =======
## load env config
load_dotenv()
# Setup embeddings
Settings.embed_model = HuggingFaceEmbedding(
model_name = MY_CONFIG.EMBEDDING_MODEL
)
logger.info (f"✅ Using embedding model: {MY_CONFIG.EMBEDDING_MODEL}")
# Connect to vector database based on configuration
if MY_CONFIG.VECTOR_DB_TYPE == "cloud_zilliz":
# Use Zilliz Cloud
if not MY_CONFIG.ZILLIZ_CLUSTER_ENDPOINT or not MY_CONFIG.ZILLIZ_TOKEN:
raise ValueError("Cloud database configuration missing. Set ZILLIZ_CLUSTER_ENDPOINT and ZILLIZ_TOKEN in .env")
vector_store = MilvusVectorStore(
uri=MY_CONFIG.ZILLIZ_CLUSTER_ENDPOINT,
token=MY_CONFIG.ZILLIZ_TOKEN,
dim=MY_CONFIG.EMBEDDING_LENGTH,
collection_name=MY_CONFIG.COLLECTION_NAME,
overwrite=False
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
logger.info("Connected to cloud vector database")
else:
# Use local Milvus (default)
vector_store = MilvusVectorStore(
uri=MY_CONFIG.MILVUS_URI_VECTOR,
dim=MY_CONFIG.EMBEDDING_LENGTH,
collection_name=MY_CONFIG.COLLECTION_NAME,
overwrite=False
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
logger.info("Connected to local vector database")
# Load Document Index from database
index = VectorStoreIndex.from_vector_store(
vector_store=vector_store, storage_context=storage_context)
logger.info("Vector index loaded successfully")
# Setup LLM
logger.info (f"✅ Using LLM model : {MY_CONFIG.LLM_MODEL}")
Settings.llm = LiteLLM (
model=MY_CONFIG.LLM_MODEL,
)
query_engine = index.as_query_engine()
# Sample queries
queries = [
# "What is AI Alliance?",
# "What are the main focus areas of AI Alliance?",
# "What are some ai alliance projects?",
# "What are the upcoming events?",
# "How do I join the AI Alliance?",
# "When was the moon landing?",
]
for query in queries:
run_query(query)
logger.info("-----------------------------------")
while True:
# Get user input
user_query = input("\nEnter your question (or 'q' to exit): ")
# Check if user wants to quit
if user_query.lower() in ['quit', 'exit', 'q']:
logger.info ("Goodbye!")
break
# Process the query
if user_query.strip() == "":
continue
try:
run_query(user_query)
except Exception as e:
logger.error(f"Error processing query: {e}")
print(f"Error processing query: {e}")