Spaces:
Runtime error
Runtime error
File size: 50,347 Bytes
a7d2416 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 |
"""
Phase 3: Community Summarization using LLM
Loads graph-data-phase-2.json, generates summaries, saves graph-data-final.json
"""
import json
import logging
import os
import time
from pathlib import Path
from typing import Dict, Any, List
from datetime import datetime
from collections import defaultdict
import networkx as nx
import openai
import google.generativeai as genai
# JSON parsing libraries (same as Phase 1)
import orjson
from json_repair import repair_json
from my_config import MY_CONFIG
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class GraphBuilderPhase3:
"""Phase 3: Generate community summaries using LLM"""
def __init__(self, llm_provider: str = "cerebras"):
"""Initialize Phase 3 processor"""
self.llm_provider = llm_provider.lower()
self.graph_data = None
self.nx_graph = None
self.community_assignments = {}
self.community_stats = {}
# Initialize LLM API based on provider
if self.llm_provider == "cerebras":
if not MY_CONFIG.CEREBRAS_API_KEY:
raise ValueError("CEREBRAS_API_KEY not set")
self.cerebras_client = openai.OpenAI(
api_key=MY_CONFIG.CEREBRAS_API_KEY,
base_url="https://api.cerebras.ai/v1"
)
self.model_name = "llama-4-scout-17b-16e-instruct"
logger.info("π Using Cerebras API")
elif self.llm_provider == "gemini":
if not MY_CONFIG.GEMINI_API_KEY:
raise ValueError("GEMINI_API_KEY not set")
genai.configure(api_key=MY_CONFIG.GEMINI_API_KEY)
self.model_name = "gemini-1.5-flash"
self.gemini_model = genai.GenerativeModel(self.model_name)
logger.info("π Using Google Gemini API")
else:
raise ValueError(f"Invalid provider '{llm_provider}'. Choose: cerebras, gemini")
# Initialize embedding model for DRIFT search metadata
try:
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
self.embedding_model = HuggingFaceEmbedding(
model_name=MY_CONFIG.EMBEDDING_MODEL
)
logger.info(f"π Initialized embedding model: {MY_CONFIG.EMBEDDING_MODEL}")
except Exception as e:
logger.warning(f"β οΈ Embedding model initialization failed: {e}")
self.embedding_model = None
logger.info("β
Phase 3 initialized: Community Summarization")
logger.info(f"π LLM Provider: {self.llm_provider.upper()}, Model: {self.model_name}")
# STEP 1: Load Phase 2 Output
def load_graph_data(self, input_path: str = None) -> bool:
"""Load graph-data-phase-2.json from Phase 2"""
if input_path is None:
input_path = "workspace/graph_data/graph-data-phase-2.json"
try:
input_file = Path(input_path)
if not input_file.exists():
logger.error(f"β Input file not found: {input_path}")
logger.error(" Please run Phase 2 (2b_process_graph_phase2.py) first")
return False
with open(input_file, 'r', encoding='utf-8') as f:
self.graph_data = json.load(f)
node_count = len(self.graph_data.get("nodes", []))
rel_count = len(self.graph_data.get("relationships", []))
# Verify Phase 2 was completed
if self.graph_data.get("metadata", {}).get("phase") != "community_detection":
logger.error("β Input file is not from Phase 2 (community_detection)")
return False
logger.info(f"π Loaded graph-data-phase-2.json: {node_count} nodes, {rel_count} relationships")
# Load community stats
self.community_stats = self.graph_data.get("community_stats", {})
num_communities = len(self.community_stats)
logger.info(f"π Found {num_communities} communities to summarize")
if num_communities == 0:
logger.error("β No communities found in Phase 2 output")
return False
return True
except Exception as e:
logger.error(f"β Error loading graph data: {e}")
return False
# STEP 2: Build NetworkX Graph
def _build_networkx_graph(self) -> nx.Graph:
"""Rebuild NetworkX graph from JSON data"""
logger.info("π¨ Building NetworkX graph from JSON data...")
G = nx.Graph()
# Add nodes with attributes
for node in self.graph_data["nodes"]:
node_id = node["id"]
properties = node.get("properties", {})
G.add_node(
node_id,
name=properties.get("name", ""),
type=node.get("labels", ["Unknown"])[0],
description=properties.get("content", ""),
community_id=properties.get("community_id", ""),
degree_centrality=properties.get("degree_centrality", 0.0)
)
# Add edges
for rel in self.graph_data["relationships"]:
start_node = rel.get("startNode")
end_node = rel.get("endNode")
if start_node in G.nodes() and end_node in G.nodes():
G.add_edge(start_node, end_node)
logger.info(f"β
Built NetworkX graph: {G.number_of_nodes()} nodes, {G.number_of_edges()} edges")
return G
# STEP 3: Extract Community Assignments
def _extract_community_assignments(self) -> Dict[str, int]:
"""Extract community assignments from node properties"""
logger.info("π Extracting community assignments from nodes...")
assignments = {}
for node in self.graph_data["nodes"]:
node_id = node["id"]
comm_id_str = node.get("properties", {}).get("community_id", "")
if comm_id_str and comm_id_str.startswith("comm-"):
try:
comm_id = int(comm_id_str.replace("comm-", ""))
assignments[node_id] = comm_id
except ValueError:
logger.warning(f"Invalid community_id format: {comm_id_str}")
logger.info(f"β
Extracted {len(assignments)} community assignments")
return assignments
# STEP 4: LLM Inference Methods
def _cerebras_inference(self, system_prompt: str, user_prompt: str) -> str:
"""Call Cerebras API for inference"""
try:
# Calculate dynamic parameters based on community size and complexity
total_nodes = self.nx_graph.number_of_nodes() if hasattr(self, 'nx_graph') else 100
complexity_factor = min(1.0, total_nodes / 1000)
# Adaptive temperature: higher for complex graphs to encourage creativity
dynamic_temperature = round(0.1 + (complexity_factor * 0.4), 2) # Range: 0.1-0.5
# Adaptive tokens: more for larger/complex summaries
dynamic_tokens = int(300 + (complexity_factor * 400)) # Range: 300-700
response = self.cerebras_client.chat.completions.create(
model=self.model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
],
temperature=dynamic_temperature,
max_tokens=dynamic_tokens
)
if not response or not response.choices or not response.choices[0].message.content:
raise ValueError("Empty response from Cerebras")
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Cerebras inference error: {e}")
raise e
def _gemini_inference(self, system_prompt: str, user_prompt: str) -> str:
"""Call Gemini API for inference"""
try:
# Calculate dynamic generation config based on graph complexity
total_nodes = self.nx_graph.number_of_nodes() if hasattr(self, 'nx_graph') else 100
complexity_factor = min(1.0, total_nodes / 1000)
# Adaptive temperature and tokens for Gemini
dynamic_temperature = round(0.1 + (complexity_factor * 0.4), 2)
dynamic_tokens = int(300 + (complexity_factor * 400))
generation_config = {
"temperature": dynamic_temperature,
"max_output_tokens": dynamic_tokens,
"candidate_count": 1
}
combined_prompt = f"{system_prompt}\n\n{user_prompt}"
response = self.gemini_model.generate_content(
combined_prompt,
generation_config=generation_config
)
if not response or not response.text:
raise ValueError("Empty response from Gemini")
return response.text.strip()
except Exception as e:
logger.error(f"Gemini inference error: {e}")
raise e
# STEP 5: Generate Community Summaries
def _generate_community_summaries(self) -> Dict[int, str]:
"""Generate LLM summaries for each community"""
logger.info("π Generating community summaries with LLM...")
logger.info(f" Total communities to summarize: {len(self.community_stats)}")
summaries = {}
# Group nodes by community
communities = defaultdict(list)
for node_id, comm_id in self.community_assignments.items():
communities[comm_id].append(node_id)
start_time = time.time()
for idx, (comm_id_str, stats) in enumerate(self.community_stats.items(), 1):
comm_id = int(comm_id_str)
logger.info(f" Processing community {idx}/{len(self.community_stats)}: comm-{comm_id} ({stats['member_count']} members)")
# Get top entities by centrality
node_ids = communities[comm_id]
subgraph = self.nx_graph.subgraph(node_ids)
# Get nodes sorted by degree centrality
centrality = nx.degree_centrality(subgraph)
top_nodes = sorted(centrality.items(), key=lambda x: x[1], reverse=True)[:15]
# Prepare entity information for LLM
entity_info = []
for node_id, _ in top_nodes:
node_data = self.nx_graph.nodes[node_id]
entity_info.append({
"name": node_data.get("name", "Unknown"),
"type": node_data.get("type", "Unknown"),
"description": node_data.get("description", "")[:150] # Limit length
})
# Create LLM prompt
# Senior-developer style system/user prompts with strict output schema
# Calculate dynamic topic count based on community size
topic_count = max(2, min(5, stats['member_count'] // 3)) # Scale with community size
system_prompt = (
"You are a specialized knowledge graph summarization assistant. Your task is to analyze community "
"structures and generate comprehensive summaries for graph-based retrieval systems.\n\n"
"CONSTITUTIONAL AI PRINCIPLES:\n"
"1. Content-Adaptive: Generate summaries based on actual community composition and statistics\n"
"2. Context-Aware: Consider entity relationships and community density in summarization\n"
"3. Quality-First: Prioritize accuracy and relevance over brevity\n"
"4. Structured Output: Ensure consistent JSON format for programmatic consumption\n\n"
"SUMMARIZATION GUIDELINES:\n"
"- Analyze entity types, relationships, and community structure\n"
"- Identify key themes and concepts that define this community\n"
"- Generate topics that capture semantic meaning, not just entity names\n"
"- Assess confidence based on data completeness and coherence\n"
"- Use neutral, factual tone suitable for technical documentation"
)
user_prompt = (
f"Analyze the following community data and generate a structured summary.\n\n"
f"COMMUNITY STATISTICS:\n"
f"- Total Members: {stats['member_count']}\n"
f"- Internal Connections: {stats['internal_edges']}\n"
f"- Community Density: {stats['density']:.3f}\n"
f"- Connectivity Strength: {'High' if stats['density'] > 0.1 else 'Medium' if stats['density'] > 0.05 else 'Low'}\n\n"
f"TOP ENTITIES (name, type, description):\n{json.dumps(entity_info, indent=2)}\n\n"
f"OUTPUT FORMAT (strict JSON):\n"
f"{{\n"
f" \"summary\": \"2-3 sentence comprehensive summary of community purpose and characteristics\",\n"
f" \"primary_topics\": [\"topic_1\", \"topic_2\", \"topic_{topic_count}\"],\n"
f" \"confidence\": 0.85\n"
f"}}\n\n"
f"VALIDATION REQUIREMENTS:\n"
f"- summary: Must be 2-3 complete sentences describing community focus and key characteristics\n"
f"- primary_topics: Array of exactly {topic_count} descriptive phrases (not just entity names)\n"
f"- confidence: Float between 0.0-1.0 based on data quality and coherence\n\n"
f"IMPORTANT: Respond with ONLY the JSON object. No markdown formatting, no explanations, no code blocks."
)
# Call LLM for summary
try:
if self.llm_provider == "gemini":
summary_response = self._gemini_inference(system_prompt, user_prompt)
else: # cerebras
summary_response = self._cerebras_inference(system_prompt, user_prompt)
# Parse JSON response
parsed_summary = self._parse_summary_response(summary_response, comm_id)
if parsed_summary:
summaries[comm_id] = parsed_summary
else:
# Fallback to raw response if parsing fails
summaries[comm_id] = summary_response.strip()
# Log progress every 10 communities
if idx % 10 == 0:
elapsed = time.time() - start_time
avg_time = elapsed / idx
remaining = avg_time * (len(self.community_stats) - idx)
logger.info(f" Progress: {idx}/{len(self.community_stats)} ({elapsed:.1f}s elapsed, ~{remaining:.1f}s remaining)")
except Exception as e:
logger.error(f"β Failed to generate summary for community {comm_id}: {e}")
summaries[comm_id] = f"Community with {stats['member_count']} entities focused on {entity_info[0]['type'] if entity_info else 'various'} topics."
elapsed = time.time() - start_time
logger.info(f"β
Generated {len(summaries)} community summaries in {elapsed:.1f}s")
return summaries
def _parse_summary_response(self, response: str, comm_id: int) -> str:
"""Parse JSON summary response with fallback to text extraction"""
try:
# Clean response
cleaned_response = response.strip()
# Remove markdown formatting
if "```json" in cleaned_response:
parts = cleaned_response.split("```json")
if len(parts) > 1:
json_part = parts[1].split("```")[0].strip()
cleaned_response = json_part
elif "```" in cleaned_response:
parts = cleaned_response.split("```")
if len(parts) >= 3:
cleaned_response = parts[1].strip()
# Try to parse JSON
try:
summary_data = self._smart_json_parse_summary(cleaned_response)
if summary_data and isinstance(summary_data, dict):
summary_text = summary_data.get('summary', '')
if summary_text and len(summary_text.strip()) > 10:
return summary_text.strip()
except ValueError as e:
logger.debug(f"Summary JSON parsing failed for comm-{comm_id}: {e}")
except Exception as e:
logger.debug(f"Summary JSON parsing unexpected error for comm-{comm_id}: {e}")
except Exception as e:
logger.debug(f"Summary JSON parsing failed for comm-{comm_id}: {e}")
# Fallback: extract first meaningful sentence
try:
lines = response.split('\n')
for line in lines:
line = line.strip()
if len(line) > 20 and '.' in line and not line.startswith('{'):
return line
except Exception:
pass
return None
def _smart_json_parse_summary(self, json_text: str) -> Dict:
"""
Simple 5-step JSON parsing approach (exactly same as Phase 1)
"""
cleaned_text = json_text.strip()
# Step 1: orjson
try:
result = orjson.loads(cleaned_text.encode('utf-8'))
logger.debug("β
Step 1: orjson succeeded")
return result
except Exception as e:
logger.debug(f"β Step 1: orjson failed - {e}")
# Step 2: json-repair
try:
repaired = repair_json(cleaned_text)
result = orjson.loads(repaired.encode('utf-8'))
logger.debug("β
Step 2: json-repair + orjson succeeded")
return result
except Exception as e:
logger.debug(f"β Step 2: json-repair failed - {e}")
# Step 3: standard json
try:
result = json.loads(cleaned_text)
logger.debug("β
Step 3: standard json succeeded")
return result
except Exception as e:
logger.debug(f"β Step 3: standard json failed - {e}")
# Step 4: json-repair + standard json
try:
repaired = repair_json(cleaned_text)
result = json.loads(repaired)
logger.debug("β
Step 4: json-repair + standard json succeeded")
return result
except Exception as e:
logger.debug(f"β Step 4: json-repair + standard json failed - {e}")
# Step 5: All failed - this will trigger save failed txt files
raise ValueError("All 4 JSON parsing steps failed")
# STEP 6: Identify Key Entities
def _identify_key_entities(self) -> Dict[int, List[str]]:
"""Identify key entities in each community based on centrality"""
logger.info("π Identifying key entities per community...")
key_entities = {}
# Group nodes by community
communities = defaultdict(list)
for node_id, comm_id in self.community_assignments.items():
communities[comm_id].append(node_id)
for comm_id, node_ids in communities.items():
subgraph = self.nx_graph.subgraph(node_ids)
# Calculate degree centrality
centrality = nx.degree_centrality(subgraph)
# Get top 5 entities
top_nodes = sorted(centrality.items(), key=lambda x: x[1], reverse=True)[:5]
key_entities[comm_id] = [
self.nx_graph.nodes[node_id].get("name", "Unknown")
for node_id, _ in top_nodes
]
logger.info(f"β
Identified key entities for {len(key_entities)} communities")
return key_entities
# STEP 7: Create Community Nodes
def _create_community_nodes(self, community_summaries: Dict[int, str], key_entities: Dict[int, List[str]]) -> List[Dict]:
"""Create community nodes for the graph"""
logger.info("ποΈ Creating community nodes...")
import uuid
community_nodes = []
for comm_id_str, stats in self.community_stats.items():
comm_id = int(comm_id_str)
node = {
"id": f"community-{uuid.uuid4()}",
"elementId": f"community-{uuid.uuid4()}",
"labels": ["Community"],
"properties": {
"community_id": f"comm-{comm_id}",
"level": 1,
"member_count": stats["member_count"],
"internal_edges": stats["internal_edges"],
"density": round(stats["density"], 4),
"avg_degree": round(stats["avg_degree"], 2),
"summary": community_summaries.get(comm_id, ""),
"key_entities": key_entities.get(comm_id, []),
"created_date": datetime.now().isoformat()
}
}
community_nodes.append(node)
logger.info(f"β
Created {len(community_nodes)} community nodes")
return community_nodes
# STEP 8: Create IN_COMMUNITY Relationships
def _create_in_community_relationships(self, community_nodes: List[Dict]) -> List[Dict]:
"""Create IN_COMMUNITY relationships linking entities to communities"""
logger.info("Creating IN_COMMUNITY relationships...")
import uuid
# Create mapping from community_id to community node id
comm_id_to_node_id = {}
for node in community_nodes:
comm_id = node["properties"]["community_id"]
comm_id_to_node_id[comm_id] = node["id"]
relationships = []
for entity_id, comm_id in self.community_assignments.items():
comm_node_id = comm_id_to_node_id.get(f"comm-{comm_id}")
if comm_node_id:
# Calculate confidence based on community membership strength
entity_node = next((n for n in self.graph_data['nodes'] if n['id'] == entity_id), None)
if entity_node:
degree_centrality = entity_node.get('properties', {}).get('degree_centrality', 0.5)
# Higher centrality = higher confidence in community assignment
dynamic_confidence = round(0.6 + (degree_centrality * 0.4), 3) # Range: 0.6-1.0
else:
dynamic_confidence = 0.8 # Default for missing nodes
rel = {
"id": f"rel-{uuid.uuid4()}",
"startNode": entity_id,
"endNode": comm_node_id,
"type": "IN_COMMUNITY",
"properties": {
"confidence": dynamic_confidence,
"assigned_date": datetime.now().isoformat()
}
}
relationships.append(rel)
logger.info(f"β
Created {len(relationships)} IN_COMMUNITY relationships")
return relationships
# STEP 9: DRIFT Search Metadata Generation
def _generate_drift_metadata(self, community_summaries: Dict[int, str], key_entities: Dict[int, List[str]]) -> Dict:
"""Generate DRIFT search metadata using existing embedding infrastructure"""
logger.info("π Generating DRIFT search metadata...")
if not self.embedding_model:
logger.warning("β οΈ Embedding model not available, skipping DRIFT metadata")
return {}
# Calculate dynamic values from actual graph data
total_communities = len(community_summaries)
total_nodes = self.nx_graph.number_of_nodes()
total_edges = self.nx_graph.number_of_edges()
avg_community_size = sum(self.community_stats.get(str(i), {}).get("member_count", 0)
for i in community_summaries.keys()) / total_communities if total_communities > 0 else 0
graph_density = total_edges / (total_nodes * (total_nodes - 1) / 2) if total_nodes > 1 else 0
# Calculate dynamic thresholds based on graph complexity
complexity_factor = min(1.0, (total_nodes + total_edges) / 10000) # Scale 0-1 based on graph size
base_confidence = 0.6 + (complexity_factor * 0.3) # Range: 0.6-0.9
base_response_time = 1.0 + (complexity_factor * 3.0) # Range: 1-4 seconds
base_memory = int(20 + (avg_community_size * complexity_factor * 5)) # Scale with size
# Adaptive configuration based on graph characteristics
max_communities_for_primer = min(total_communities, max(2, total_communities // 4))
lightweight_communities = max(1, max_communities_for_primer // 2)
standard_communities = max(2, int(max_communities_for_primer // 1.5))
comprehensive_communities = max_communities_for_primer
# Calculate dynamic iteration counts based on community distribution
max_iter = max(2, min(5, int(total_communities / 10) + 2))
hyde_count = max(2, min(5, int(avg_community_size / 5) + 2))
drift_metadata = {
"version": "1.0",
"generated_timestamp": datetime.now().isoformat(),
"configuration": {
"max_iterations": max_iter,
"confidence_threshold": round(base_confidence + 0.1, 2),
"top_k_communities": max_communities_for_primer,
"hyde_expansion_count": hyde_count,
"termination_criteria": "confidence_or_max_iterations"
},
"query_routing_config": {
"lightweight_drift": {
"triggers": ["single_entity", "simple_fact", "definition_query"],
"config": {
"primer_communities": int(lightweight_communities),
"follow_up_iterations": max(1, max_iter - 2),
"confidence_threshold": round(base_confidence, 2)
}
},
"standard_drift": {
"triggers": ["multi_entity", "relationship_query", "how_does"],
"config": {
"primer_communities": int(standard_communities),
"follow_up_iterations": max(1, max_iter - 1),
"confidence_threshold": round(base_confidence + 0.1, 2)
}
},
"comprehensive_drift": {
"triggers": ["analyze", "compare", "implications", "strategy"],
"config": {
"primer_communities": int(comprehensive_communities),
"follow_up_iterations": max_iter,
"confidence_threshold": round(base_confidence + 0.2, 2)
}
}
},
"performance_monitoring": {
"response_time_targets": {
"p50": round(base_response_time * 1.0, 1),
"p95": round(base_response_time * 2.5, 1),
"p99": round(base_response_time * 5.0, 1)
},
"resource_tracking": {
"memory_per_query": base_memory,
"cache_hit_rate_target": round(0.5 + (complexity_factor * 0.3), 2)
},
"bottleneck_identification": ["community_ranking", "follow_up_generation", "embedding_computation"]
},
"community_search_index": {},
"search_optimization": {
"total_communities": total_communities,
"avg_community_size": round(avg_community_size, 1),
"graph_density": round(graph_density, 6),
"total_nodes": total_nodes,
"total_edges": total_edges,
"max_primer_communities": max_communities_for_primer
}
}
# Process each community
for comm_id, summary in community_summaries.items():
comm_key = f"comm-{comm_id}"
try:
# Generate embeddings using existing HuggingFace model
summary_embedding = self.embedding_model.get_text_embedding(summary)
hyde_embeddings = self._generate_hyde_embeddings(summary)
follow_up_questions = self._generate_follow_up_questions(summary, comm_id, key_entities.get(comm_id, []))
# Add to search index
drift_metadata["community_search_index"][comm_key] = {
"summary": summary,
"key_entities": key_entities.get(comm_id, []),
"embeddings": {
"summary_embedding": summary_embedding,
"hyde_embeddings": hyde_embeddings
},
"follow_up_templates": follow_up_questions,
"statistics": self.community_stats.get(str(comm_id), {})
}
except Exception as e:
logger.warning(f"β οΈ Failed to generate metadata for {comm_key}: {e}")
continue
logger.info(f"β
Generated DRIFT metadata for {len(drift_metadata['community_search_index'])} communities")
return drift_metadata
def _generate_hyde_embeddings(self, community_summary: str) -> List[List[float]]:
"""Generate HyDE embeddings for enhanced recall"""
# Create 3 hypothetical document variations
hyde_templates = [
f"Research analysis and findings: {community_summary}",
f"Technical report and documentation: {community_summary}",
f"Business implications and strategic analysis: {community_summary}"
]
hyde_embeddings = []
for template in hyde_templates:
try:
embedding = self.embedding_model.get_text_embedding(template)
hyde_embeddings.append(embedding)
except Exception as e:
logger.warning(f"β οΈ HyDE embedding generation failed: {e}")
continue
return hyde_embeddings
def _generate_follow_up_questions(self, community_summary: str, comm_id: int, key_entities: List[str]) -> List[Dict]:
"""Generate follow-up questions using existing LLM infrastructure"""
# Professional system prompt matching Phase 1 style
system_prompt = (
"You are a specialized DRIFT search question generation assistant. Your task is to analyze community "
"summaries and generate targeted follow-up questions for iterative knowledge graph exploration.\n\n"
"CONSTITUTIONAL AI PRINCIPLES:\n"
"1. Context-Adaptive: Generate questions based on actual community content and entities\n"
"2. Search-Aware: Choose appropriate search types to guide query routing optimization\n"
"3. Relevance-First: Prioritize questions that expand understanding of community themes\n"
"4. Structured Output: Ensure consistent JSON format for programmatic consumption\n\n"
"QUESTION GENERATION GUIDELINES:\n"
"- Analyze community summary and key entities to identify knowledge gaps\n"
"- Generate questions that would reveal additional relevant information\n"
"- Use local search for entity-specific queries, relationship for connections, global for themes\n"
"- Assign relevance scores based on potential value for understanding the community\n"
"- Target entities should guide search focus and retrieval optimization"
)
user_prompt = (
f"Analyze the following community data and generate targeted follow-up questions.\n\n"
f"COMMUNITY SUMMARY:\n{community_summary}\n\n"
f"KEY ENTITIES: {', '.join(key_entities[:5]) if key_entities else 'No specific entities identified'}\n\n"
f"TASK: Generate exactly 3 strategic follow-up questions for DRIFT search.\n\n"
f"OUTPUT FORMAT (strict JSON):\n"
f"[\n"
f" {{\n"
f" \"question\": \"Specific, actionable question about the community\",\n"
f" \"relevance_score\": 0.85,\n"
f" \"search_type\": \"local\",\n"
f" \"target_entities\": [\"entity1\", \"entity2\"]\n"
f" }}\n"
f"]\n\n"
f"VALIDATION REQUIREMENTS:\n"
f"- question: Must be a clear, specific question that expands community understanding\n"
f"- relevance_score: Float 0.0-1.0 based on potential value for knowledge expansion\n"
f"- search_type: Must be one of 'local', 'relationship', or 'global'\n"
f"- target_entities: Array of relevant entity names from the key entities list\n\n"
f"IMPORTANT: Respond with ONLY the JSON array. No markdown formatting, no explanations, no code blocks."
)
try:
# Use existing LLM infrastructure
if self.llm_provider == "cerebras":
response = self._cerebras_inference(system_prompt, user_prompt)
else:
response = self._gemini_inference(system_prompt, user_prompt)
# Parse LLM response to structured questions
questions = self._parse_questions_response(response, key_entities)
return questions
except Exception as e:
logger.error(f"β Question generation failed for comm-{comm_id}: {e}")
return []
def _parse_questions_response(self, response: str, key_entities: List[str]) -> List[Dict]:
"""Parse LLM response into structured questions using robust multi-strategy approach"""
try:
# Calculate dynamic default relevance based on community statistics
total_nodes = self.nx_graph.number_of_nodes() if hasattr(self, 'nx_graph') else 100
node_density = min(1.0, total_nodes / 500) # Scale 0-1
default_relevance = round(0.5 + (node_density * 0.4), 2) # Range: 0.5-0.9
max_questions = max(2, min(5, len(key_entities) + 1)) # Adaptive question count
# Strategy 1: JSON array extraction with regex
try:
import re
match = re.search(r"(\[\s*\{[\s\S]*?\}\s*\])", response)
if match:
json_str = match.group(1)
try:
questions = self._smart_json_parse_questions(json_str)
if questions:
return self._validate_and_normalize_questions(questions, key_entities, default_relevance, max_questions)
except ValueError:
pass # Continue to next strategy if JSON parsing fails
except Exception:
pass
# Strategy 2: Multiple JSON objects extraction
try:
import re
pattern = r'\{[^{}]*"question"[^{}]*\}'
matches = re.findall(pattern, response)
if matches:
json_array = "[" + ",".join(matches) + "]"
try:
questions = self._smart_json_parse_questions(json_array)
if questions:
return self._validate_and_normalize_questions(questions, key_entities, default_relevance, max_questions)
except ValueError:
pass # Continue to next strategy if JSON parsing fails
except Exception:
pass
# Strategy 3: Markdown list extraction
try:
questions = self._parse_markdown_questions(response, key_entities, default_relevance)
if questions:
return self._validate_and_normalize_questions(questions, key_entities, default_relevance, max_questions)
except Exception:
pass
# Strategy 4: Generate default questions based on entities
return self._generate_default_questions(key_entities, default_relevance, max_questions)
except Exception as e:
logger.warning(f"β οΈ All question parsing strategies failed: {e}")
return self._generate_default_questions(key_entities, 0.7, 3)
def _smart_json_parse_questions(self, json_text: str) -> List[Dict]:
"""
Simple 5-step JSON parsing approach (exactly same as Phase 1)
"""
cleaned_text = json_text.strip()
# Step 1: orjson
try:
result = orjson.loads(cleaned_text.encode('utf-8'))
logger.debug("β
Step 1: orjson succeeded")
return result
except Exception as e:
logger.debug(f"β Step 1: orjson failed - {e}")
# Step 2: json-repair
try:
repaired = repair_json(cleaned_text)
result = orjson.loads(repaired.encode('utf-8'))
logger.debug("β
Step 2: json-repair + orjson succeeded")
return result
except Exception as e:
logger.debug(f"β Step 2: json-repair failed - {e}")
# Step 3: standard json
try:
result = json.loads(cleaned_text)
logger.debug("β
Step 3: standard json succeeded")
return result
except Exception as e:
logger.debug(f"β Step 3: standard json failed - {e}")
# Step 4: json-repair + standard json
try:
repaired = repair_json(cleaned_text)
result = json.loads(repaired)
logger.debug("β
Step 4: json-repair + standard json succeeded")
return result
except Exception as e:
logger.debug(f"β Step 4: json-repair + standard json failed - {e}")
# Step 5: All failed - this will trigger save failed txt files
raise ValueError("All 4 JSON parsing steps failed")
def _parse_markdown_questions(self, response: str, key_entities: List[str], default_relevance: float) -> List[Dict]:
"""Parse questions from markdown or plain text format"""
questions = []
# Look for numbered lists or bullet points
import re
patterns = [
r'\d+\.\s*(.+?)(?=\n\d+\.|\n-|\n\*|$)', # Numbered list
r'-\s*(.+?)(?=\n-|\n\*|\n\d+\.|$)', # Dash list
r'\*\s*(.+?)(?=\n\*|\n-|\n\d+\.|$)' # Asterisk list
]
for pattern in patterns:
matches = re.findall(pattern, response, re.MULTILINE | re.DOTALL)
if matches and len(matches) >= 2:
for i, match in enumerate(matches[:5]): # Max 5 questions
question_text = match.strip().replace('\n', ' ')
if len(question_text) > 10: # Reasonable question length
search_type = 'global' if any(word in question_text.lower()
for word in ['analyze', 'compare', 'overall', 'trends']) else 'local'
questions.append({
'question': question_text,
'relevance_score': max(0.6, default_relevance - (i * 0.1)),
'search_type': search_type,
'target_entities': key_entities[:2] if key_entities else []
})
break
return questions
def _generate_default_questions(self, key_entities: List[str], default_relevance: float, max_questions: int) -> List[Dict]:
"""Generate default questions when parsing fails"""
if not key_entities:
return []
# Template questions based on entity analysis
question_templates = [
("What is {entity} and what role does it play?", "local"),
("How does {entity} relate to other entities in this community?", "relationship"),
("What are the key characteristics and properties of {entity}?", "local"),
("What trends or patterns involve {entity}?", "global"),
("How might {entity} impact the broader context?", "global")
]
questions = []
entities_to_use = key_entities[:max_questions]
for i, entity in enumerate(entities_to_use):
if i < len(question_templates):
template, search_type = question_templates[i]
question = template.format(entity=entity)
questions.append({
'question': question,
'relevance_score': max(0.6, default_relevance - (i * 0.05)),
'search_type': search_type,
'target_entities': [entity]
})
return questions
def _validate_and_normalize_questions(self, questions: List[Dict], key_entities: List[str],
default_relevance: float, max_questions: int) -> List[Dict]:
"""Validate and normalize question format"""
normalized = []
for q in questions:
if not isinstance(q, dict):
continue
# Extract question text
question = q.get('question') or q.get('q') or q.get('text')
if not question or len(str(question).strip()) < 5:
continue
# Extract and validate relevance score
relevance = q.get('relevance_score', default_relevance)
try:
relevance = float(relevance)
if relevance <= 0 or relevance > 1:
relevance = default_relevance
except (ValueError, TypeError):
relevance = default_relevance
# Extract and validate search type
search_type = q.get('search_type', 'local')
if search_type not in ('local', 'relationship', 'global'):
search_type = 'local'
# Extract target entities
target_entities = q.get('target_entities', [])
if not isinstance(target_entities, list):
target_entities = []
# Ensure we have some target entities
if not target_entities and key_entities:
target_entities = key_entities[:2]
normalized.append({
'question': str(question).strip(),
'relevance_score': round(relevance, 2),
'search_type': search_type,
'target_entities': target_entities
})
if len(normalized) >= max_questions:
break
return normalized
# STEP 10: Main Processing Entry Point
def generate_summaries(self, input_path: str = None, output_path: str = None) -> bool:
"""Main entry point for Phase 3"""
if output_path is None:
output_path = "workspace/graph_data/graph-data-final.json"
logger.info("π Starting Phase 3: Community Summarization")
logger.info("=" * 60)
start_time = time.time()
# Step 1: Load Phase 2 output
if not self.load_graph_data(input_path):
return False
# Step 2: Build NetworkX graph
self.nx_graph = self._build_networkx_graph()
# Step 3: Extract community assignments
self.community_assignments = self._extract_community_assignments()
# Step 4: Generate LLM summaries
community_summaries = self._generate_community_summaries()
# Step 5: Identify key entities
key_entities = self._identify_key_entities()
# Step 6: Create community nodes
community_nodes = self._create_community_nodes(community_summaries, key_entities)
# Step 7: Create IN_COMMUNITY relationships
community_relationships = self._create_in_community_relationships(community_nodes)
# Step 8: Merge everything
self.graph_data["nodes"].extend(community_nodes)
self.graph_data["relationships"].extend(community_relationships)
# Step 9: Add communities section
self.graph_data["communities"] = {
"algorithm": "Leiden",
"total_communities": len(community_summaries),
"modularity_score": self.graph_data["metadata"]["community_detection"]["modularity_score"],
"summaries": {
f"comm-{k}": v for k, v in community_summaries.items()
}
}
# Step 10: Generate DRIFT search metadata
drift_metadata = self._generate_drift_metadata(community_summaries, key_entities)
if drift_metadata:
self.graph_data["drift_search_metadata"] = drift_metadata
logger.info("β
Added DRIFT search metadata to graph data")
# Step 11: Clean up temporary data
if "community_stats" in self.graph_data:
del self.graph_data["community_stats"]
# Step 12: Update metadata
self.graph_data["metadata"]["phase"] = "final"
self.graph_data["metadata"]["entity_count"] = len([n for n in self.graph_data["nodes"] if "Community" not in n["labels"]])
self.graph_data["metadata"]["community_count"] = len(community_nodes)
self.graph_data["metadata"]["total_node_count"] = len(self.graph_data["nodes"])
self.graph_data["metadata"]["total_relationship_count"] = len(self.graph_data["relationships"])
# Step 13: Save final output
if self._save_final_output(output_path):
elapsed = time.time() - start_time
logger.info("=" * 60)
logger.info(f"β
Phase 3 completed successfully in {elapsed:.1f}s")
logger.info("π Final stats:")
logger.info(f" - Total nodes: {len(self.graph_data['nodes'])}")
logger.info(f" - Entity nodes: {self.graph_data['metadata']['entity_count']}")
logger.info(f" - Community nodes: {len(community_nodes)}")
logger.info(f" - Total relationships: {len(self.graph_data['relationships'])}")
logger.info(f" - Communities with summaries: {len(community_summaries)}")
logger.info(f" - Output saved to: {output_path}")
return True
else:
return False
# STEP 14: Save Final Output
def _save_final_output(self, output_path: str) -> bool:
"""Save graph-data-final.json with DRIFT search metadata"""
try:
# Ensure output directory exists
output_dir = Path(output_path).parent
output_dir.mkdir(parents=True, exist_ok=True)
# Save final output
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(self.graph_data, f, indent=2, ensure_ascii=False)
# Calculate file size
output_size = os.path.getsize(output_path)
output_size_mb = output_size / (1024 * 1024)
logger.info(f"πΎ Saved final output: {output_path} ({output_size_mb:.2f} MB)")
return True
except Exception as e:
logger.error(f"β Error saving final output: {e}")
return False
# STEP 15: Main Entry Point
def main():
"""Main function to run Phase 3: Community Summarization with DRIFT Search Metadata"""
logger.info("π GraphRAG Phase 3: Community Summarization + DRIFT Search Metadata")
logger.info(" Input: graph-data-phase-2.json (from Phase 2)")
logger.info(" Output: graph-data-final.json (with DRIFT search metadata)")
logger.info("")
# Choose LLM provider from environment or default to cerebras
llm_provider = os.getenv("GRAPH_LLM_PROVIDER", "cerebras").lower()
logger.info(f" Using LLM provider: {llm_provider.upper()}")
try:
# Initialize Phase 3 processor
processor = GraphBuilderPhase3(llm_provider=llm_provider)
# Generate summaries
success = processor.generate_summaries()
if success:
logger.info("")
logger.info("β
Phase 3 completed successfully!")
logger.info("οΏ½ DRIFT search metadata generated and included")
logger.info("οΏ½π Next step: Upload to Neo4j using 3b_save_to_graph_db.py")
logger.info(" The graph-data-final.json is now ready for Neo4j import with DRIFT capabilities")
return 0
else:
logger.error("")
logger.error("β Phase 3 failed")
logger.error(" Please check the logs above for details")
return 1
except Exception as e:
logger.error(f"β Phase 3 pipeline failed: {e}")
import traceback
logger.error(traceback.format_exc())
return 1
if __name__ == "__main__":
exit(main())
|