Spaces:
Runtime error
Runtime error
File size: 40,309 Bytes
a7d2416 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 |
"""
GraphRAG Phase 1: LLM-based Entity and Relationship Extraction
Builds initial knowledge graph from markdown files using LLMs (Cerebras or Gemini)
"""
import json
import logging
import os
import time
import uuid
from pathlib import Path
from typing import Any, Dict, List
from datetime import datetime
import orjson
from json_repair import repair_json
import google.generativeai as genai
import openai
from my_config import MY_CONFIG
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class GraphBuilder:
def __init__(self, llm_provider="cerebras"):
self.llm_provider = llm_provider.lower()
# Global entity registry for deduplication across files
self.global_entity_registry = {}
# Initialize graph data structure
self.graph_data = {"nodes": [], "relationships": []}
self.processed_files = 0
# Initialize LLM API based on provider
if self.llm_provider == "cerebras":
if not MY_CONFIG.CEREBRAS_API_KEY:
raise ValueError("CEREBRAS_API_KEY environment variable not set. Get free key at: https://cloud.cerebras.ai/")
# Configure Cerebras client
self.cerebras_client = openai.OpenAI(
api_key=MY_CONFIG.CEREBRAS_API_KEY,
base_url="https://api.cerebras.ai/v1"
)
self.model_name = "llama-4-scout-17b-16e-instruct"
logger.info("π Using Cerebras API")
elif self.llm_provider == "gemini":
if not MY_CONFIG.GEMINI_API_KEY:
raise ValueError("GEMINI_API_KEY environment variable not set. Get free key at: https://aistudio.google.com/")
# Configure Gemini with FREE tier
genai.configure(api_key=MY_CONFIG.GEMINI_API_KEY)
self.model_name = "gemini-1.5-flash"
self.gemini_model = genai.GenerativeModel(self.model_name)
logger.info("π Using Google Gemini API,)")
else:
valid_providers = ["cerebras", "gemini"]
raise ValueError(f"Invalid provider '{llm_provider}'. Choose from: {valid_providers}")
# Configure extraction parameters
self.min_entities = int(os.getenv("GRAPH_MIN_ENTITIES", "5"))
self.max_entities = int(os.getenv("GRAPH_MAX_ENTITIES", "15"))
self.min_relationships = int(os.getenv("GRAPH_MIN_RELATIONSHIPS", "3"))
self.max_relationships = int(os.getenv("GRAPH_MAX_RELATIONSHIPS", "8"))
self.min_confidence = float(os.getenv("GRAPH_MIN_CONFIDENCE", "0.8"))
self.max_content_chars = int(os.getenv("GRAPH_MAX_CONTENT_CHARS", "12000"))
self.sentence_boundary_ratio = float(os.getenv("GRAPH_SENTENCE_BOUNDARY_RATIO", "0.7"))
logger.info(f"β
Initialized {self.llm_provider.upper()} provider with model: {self.model_name}")
logger.info(f"Extraction config: {self.min_entities}-{self.max_entities} entities, {self.min_relationships}-{self.max_relationships} relationships, min confidence: {self.min_confidence}")
logger.info(f"Content processing: {self.max_content_chars} chars per chunk with overlap for FULL analysis")
# STEP 0: Clean Graph Data Folder
def clean_graph_folder(self, graph_dir: str = None):
if graph_dir is None:
graph_dir = "workspace/graph_data"
try:
graph_path = Path(graph_dir)
if graph_path.exists():
# Remove all files in the directory
for file_path in graph_path.glob("*"):
if file_path.is_file():
file_path.unlink()
logger.debug(f"Removed: {file_path.name}")
logger.info(f"Cleaned graph folder: {graph_dir}")
else:
# Create directory if it doesn't exist
graph_path.mkdir(parents=True, exist_ok=True)
logger.info(f"Created graph folder: {graph_dir}")
except Exception as e:
logger.warning(f"Failed to clean graph folder: {e}")
# STEP 1: Content Preprocessing and Chunking
def _preprocess_content(self, text: str, max_chars: int = None) -> str:
# Remove excessive whitespace but keep full content
text = ' '.join(text.split())
return text.strip()
def _chunk_content(self, text: str, chunk_size: int = None, overlap: int = 200) -> List[str]:
if chunk_size is None:
chunk_size = self.max_content_chars
# If content fits in one chunk, return as-is
if len(text) <= chunk_size:
return [text]
chunks = []
start = 0
while start < len(text):
# Calculate end position
end = start + chunk_size
if end >= len(text):
# Last chunk
chunks.append(text[start:])
break
# Try to find good break point (sentence boundary)
chunk_text = text[start:end]
last_period = chunk_text.rfind('.')
last_newline = chunk_text.rfind('\n')
# Use best break point
break_point = max(last_period, last_newline)
if break_point > chunk_size * 0.7: # Good break point
actual_end = start + break_point + 1
chunks.append(text[start:actual_end])
start = actual_end - overlap # Overlap for context
else:
# No good break point, use hard split
chunks.append(text[start:end])
start = end - overlap
return chunks
# STEP 2: LLM Prompt Generation
def get_entity_extraction_prompt(self) -> str:
return f"""You are a specialized knowledge graph extraction assistant. Your task is to analyze content and extract entities and relationships to build comprehensive knowledge graphs.
DYNAMIC EXTRACTION REQUIREMENTS:
- Extract {self.min_entities}-{self.max_entities} most important entities from the content
- Create {self.min_relationships}-{self.max_relationships} meaningful relationships between entities
- Confidence threshold: {self.min_confidence} (only include high-confidence extractions)
- Focus on extracting diverse entity types relevant to the content domain
CONSTITUTIONAL AI PRINCIPLES:
1. Content-Adaptive: Determine entity types based on content analysis, not predefined categories
2. Relationship-Rich: Focus on meaningful semantic relationships between entities
3. Context-Aware: Consider document context and domain when extracting entities
4. Quality-First: Prioritize extraction quality over quantity
ENTITY EXTRACTION GUIDELINES:
- Identify the most important concepts, terms, people, places, organizations, technologies, events
- Extract entities that would be valuable for knowledge graph queries
- Include both explicit entities (directly mentioned) and implicit entities (strongly implied)
- Assign appropriate types based on semantic analysis of the entity's role in the content
RELATIONSHIP EXTRACTION GUIDELINES:
- Create relationships that capture semantic meaning, not just co-occurrence
- Use descriptive relationship types that express the nature of the connection
- Include hierarchical, associative, and causal relationships where appropriate
- Ensure relationships are bidirectionally meaningful and contextually accurate
OUTPUT FORMAT (strict JSON):
{{
"entities": [
{{
"text": "Entity Name",
"type": "DynamicType",
"content": "Comprehensive description of the entity",
"confidence": 0.95
}}
],
"relationships": [
{{
"startNode": "Entity Name 1",
"endNode": "Entity Name 2",
"type": "DESCRIPTIVE_RELATIONSHIP_TYPE",
"description": "Clear description of the relationship",
"evidence": "Direct evidence from text supporting this relationship",
"confidence": 0.90
}}
]
}}
IMPORTANT: Respond with ONLY the JSON object. No explanations, no markdown formatting, no code blocks."""
# STEP 3: LLM Inference Methods
def _cerebras_inference(self, system_prompt: str, user_prompt: str) -> str:
try:
# Cerebras uses OpenAI-compatible chat format
response = self.cerebras_client.chat.completions.create(
model=self.model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
],
temperature=0.1,
max_tokens=2000
)
# Check for empty response
if not response or not response.choices or not response.choices[0].message.content:
raise ValueError("Empty response from Cerebras")
return response.choices[0].message.content.strip()
except Exception as e:
# Check for quota/rate limit exceeded errors
error_str = str(e).lower()
if "429" in str(e) and "quota" in error_str:
logger.error(f"π« QUOTA EXCEEDED: Cerebras API rate/quota limit reached - {e}")
raise Exception("QUOTA_EXCEEDED") from e
else:
logger.error(f"Error with Cerebras inference: {e}")
raise e
def _gemini_inference(self, system_prompt: str, user_prompt: str) -> str:
try:
combined_prompt = f"{system_prompt}\n\n{user_prompt}"
response = self.gemini_model.generate_content(combined_prompt)
if not response or not response.text:
raise ValueError("Empty response from Gemini")
return response.text.strip()
except Exception as e:
# Check for quota exceeded error
if "429" in str(e) and "quota" in str(e).lower():
logger.error(f"π« QUOTA EXCEEDED: Gemini API daily limit reached - {e}")
raise Exception("QUOTA_EXCEEDED") from e
else:
logger.error(f"Error with Gemini inference: {e}")
raise e
# STEP 4: JSON Parsing Pipeline
def _smart_json_parse(self, json_text: str) -> Dict[str, Any]:
cleaned_text = json_text.strip()
# Step 1: orjson
try:
result = orjson.loads(cleaned_text.encode('utf-8'))
logger.debug("β
Step 1: orjson succeeded")
return result
except Exception as e:
logger.debug(f"β Step 1: orjson failed - {e}")
# Step 2: json-repair
try:
repaired = repair_json(cleaned_text)
result = orjson.loads(repaired.encode('utf-8'))
logger.debug("β
Step 2: json-repair + orjson succeeded")
return result
except Exception as e:
logger.debug(f"β Step 2: json-repair failed - {e}")
# Step 3: standard json
try:
result = json.loads(cleaned_text)
logger.debug("β
Step 3: standard json succeeded")
return result
except Exception as e:
logger.debug(f"β Step 3: standard json failed - {e}")
# Step 4: json-repair + standard json
try:
repaired = repair_json(cleaned_text)
result = json.loads(repaired)
logger.debug("β
Step 4: json-repair + standard json succeeded")
return result
except Exception as e:
logger.debug(f"β Step 4: json-repair + standard json failed - {e}")
# Step 5: All failed - this will trigger save failed txt files
raise ValueError("All 4 JSON parsing steps failed")
# STEP 5: Response Parsing and Validation
def _parse_llm_extraction_response(self, llm_response: str, file_name: str) -> Dict[str, Any]:
# Clean up response first
cleaned_response = llm_response.strip()
# Remove markdown formatting
if "```json" in cleaned_response:
parts = cleaned_response.split("```json")
if len(parts) > 1:
json_part = parts[1].split("```")[0].strip()
cleaned_response = json_part
elif "```" in cleaned_response:
parts = cleaned_response.split("```")
if len(parts) >= 3:
cleaned_response = parts[1].strip()
# Use the 5-step JSON parsing pipeline
try:
extraction_data = self._smart_json_parse(cleaned_response)
# Validate complete format
if self._validate_complete_format(extraction_data):
return extraction_data
else:
self._save_failed_response(cleaned_response, file_name, "Format validation failed", "Missing required fields or empty values")
return None
except Exception as e:
logger.error(f"β All JSON parsing steps failed for file {file_name}: {str(e)}")
self._save_failed_response(cleaned_response, file_name, "All parsing steps failed", str(e))
return None
# STEP 6: Format Validation
def _validate_complete_format(self, extraction_data: Dict[str, Any]) -> bool:
if not isinstance(extraction_data, dict):
return False
if "entities" not in extraction_data or "relationships" not in extraction_data:
return False
entities = extraction_data.get("entities", [])
relationships = extraction_data.get("relationships", [])
if not isinstance(entities, list) or len(entities) == 0:
return False
for entity in entities:
if not isinstance(entity, dict):
return False
required_fields = ["text", "type", "content", "confidence"]
for field in required_fields:
if field not in entity:
return False
value = entity[field]
if value is None or value == "" or (isinstance(value, str) and not value.strip()):
return False
if not isinstance(entity["confidence"], (int, float)) or entity["confidence"] <= 0:
return False
if isinstance(relationships, list):
for rel in relationships:
if not isinstance(rel, dict):
return False
required_fields = ["startNode", "endNode", "type", "description", "evidence", "confidence"]
for field in required_fields:
if field not in rel:
return False
value = rel[field]
if value is None or value == "" or (isinstance(value, str) and not value.strip()):
return False
if not isinstance(rel["confidence"], (int, float)) or rel["confidence"] <= 0:
return False
return True
# STEP 7: Error Handling and Failed Response Logging
def _save_failed_response(self, llm_response: str, file_name: str, _json_error: str, _repair_error: str):
try:
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
output_dir = Path("workspace/graph_data")
output_dir.mkdir(parents=True, exist_ok=True)
with open(output_dir / "failed_responses.txt", 'a', encoding='utf-8') as f:
f.write(f"# Failed response from file: {file_name} at {timestamp}\n")
f.write(llm_response)
f.write("\n---\n")
f.flush()
except Exception as save_error:
logger.error(f"Failed to save failed response from {file_name}: {save_error}")
# STEP 8: Main Entity Extraction
def extract_entities_with_llm(self, content: str, file_name: str) -> Dict[str, Any]:
# Preprocess content
processed_content = self._preprocess_content(content)
# Split into chunks
chunks = self._chunk_content(processed_content)
logger.info(f"π Processing {file_name}: {len(processed_content)} chars in {len(chunks)} chunk(s)")
# Collect all entities and relationships from chunks
all_entities = []
all_relationships = []
for chunk_idx, chunk in enumerate(chunks):
logger.info(f"π Processing chunk {chunk_idx + 1}/{len(chunks)} for {file_name}")
# Simple retry mechanism for empty content - just send to LLM again
max_retries = 3
for attempt in range(max_retries):
# Get the optimized prompt for entity extraction based on provider
system_prompt = self.get_entity_extraction_prompt()
# Create user prompt with chunk content
chunk_info = f" (chunk {chunk_idx + 1}/{len(chunks)})" if len(chunks) > 1 else ""
user_prompt = f"""
Analyze the following content from file "{file_name}"{chunk_info}:
```
{chunk}
```
Extract all relevant entities, concepts, and their relationships from this content.
"""
# Call appropriate LLM API
try:
if self.llm_provider == "gemini":
llm_response = self._gemini_inference(system_prompt, user_prompt)
elif self.llm_provider == "cerebras":
llm_response = self._cerebras_inference(system_prompt, user_prompt)
else:
raise ValueError(f"Unsupported LLM provider: {self.llm_provider}")
except Exception as e:
if "QUOTA_EXCEEDED" in str(e):
logger.error(f"π« QUOTA EXCEEDED on file {file_name}, chunk {chunk_idx + 1} - stopping processing")
# Return partial results if we have any
return {
"entities": all_entities,
"relationships": all_relationships,
"file": file_name,
"structure": {"section": "partial_quota_exceeded"},
"chunks_processed": chunk_idx,
"total_content_length": len(processed_content),
"quota_exceeded": True
}
else:
raise e
# Parse the JSON response
result = self._parse_llm_extraction_response(llm_response, f"{file_name}_chunk_{chunk_idx}")
if result is not None or attempt == max_retries - 1:
if result is None:
logger.warning(f"β Chunk {chunk_idx + 1} of {file_name} failed all validation attempts, skipping")
break
# Chunk results to collections
chunk_entities = result.get("entities", [])
chunk_relationships = result.get("relationships", [])
# Add chunk identifier to entities for deduplication
for entity in chunk_entities:
entity["chunk_id"] = chunk_idx
entity["source_chunk"] = f"chunk_{chunk_idx}"
# Add chunk identifier to relationships
for rel in chunk_relationships:
rel["chunk_id"] = chunk_idx
rel["source_chunk"] = f"chunk_{chunk_idx}"
all_entities.extend(chunk_entities)
all_relationships.extend(chunk_relationships)
logger.info(f"β
Chunk {chunk_idx + 1}: {len(chunk_entities)} entities, {len(chunk_relationships)} relationships")
break
else:
logger.info(f"Chunk {chunk_idx + 1} attempt {attempt + 1}/{max_retries}: Validation failed, retrying")
# Deduplicate entities across chunks (same entity name = same entity)
unique_entities = {}
for entity in all_entities:
entity_key = entity.get("text", "").lower().strip()
if entity_key and entity_key not in unique_entities:
unique_entities[entity_key] = entity
elif entity_key:
# Merge information from duplicate entities
existing = unique_entities[entity_key]
existing["confidence"] = max(existing.get("confidence", 0), entity.get("confidence", 0))
# Combine descriptions
existing_desc = existing.get("content", "")
new_desc = entity.get("content", "")
if new_desc and new_desc not in existing_desc:
existing["content"] = f"{existing_desc}; {new_desc}".strip("; ")
# Deduplicate relationships (same startNode+endNode+type = same relationship)
unique_relationships = {}
for rel in all_relationships:
rel_key = f"{rel.get('startNode', '').lower()}||{rel.get('endNode', '').lower()}||{rel.get('type', '').lower()}"
if rel_key and rel_key not in unique_relationships:
unique_relationships[rel_key] = rel
elif rel_key:
# Keep highest confidence relationship
existing = unique_relationships[rel_key]
if rel.get("confidence", 0) > existing.get("confidence", 0):
unique_relationships[rel_key] = rel
final_entities = list(unique_entities.values())
final_relationships = list(unique_relationships.values())
logger.info(f"Final results for {file_name}: {len(final_entities)} unique entities, {len(final_relationships)} unique relationships")
return {
"entities": final_entities,
"relationships": final_relationships,
"file": file_name,
"structure": {"section": "full_analysis"},
"chunks_processed": len(chunks),
"total_content_length": len(processed_content)
}
# STEP 9: Single File Processing
def process_md_file(self, md_file_path: str) -> Dict[str, Any]:
logger.info(f"Processing: {md_file_path}")
try:
# Read file content
with open(md_file_path, 'r', encoding='utf-8') as f:
content = f.read()
file_name = os.path.basename(md_file_path)
# Extract entities and relationships using LLM-only approach
llm_data = self.extract_entities_with_llm(content, file_name)
# Use LLM data - create nodes and relationships from validated data
entities_added = 0
relationships_added = 0
# Check if quota was exceeded during extraction
quota_exceeded = llm_data.get("quota_exceeded", False)
if quota_exceeded:
return {
"file": file_name,
"status": "quota_exceeded",
"entities_extracted": len(llm_data.get("entities", [])),
"unique_entities_added": 0,
"relationships_generated": 0,
"processed_at": datetime.now().isoformat(),
"error": "API quota exceeded during processing"
}
# Process entities from LLM
for entity in llm_data.get("entities", []):
entity_text = entity["text"]
semantic_key = entity_text.lower().strip()
# Add to global registry if new
if semantic_key not in self.global_entity_registry:
# Use LLM data directly
entity["id"] = str(uuid.uuid4())
entity["source_file"] = file_name
self.global_entity_registry[semantic_key] = entity
self.graph_data["nodes"].append(entity)
entities_added += 1
# Process relationships from LLM
for rel in llm_data.get("relationships", []):
# Apply confidence threshold filtering
rel_confidence = rel.get("confidence", 0.0)
if rel_confidence < self.min_confidence:
continue # Skip low-confidence relationships
start_text = rel["startNode"].lower().strip()
end_text = rel["endNode"].lower().strip()
# Only create if both entities exist
if start_text in self.global_entity_registry and end_text in self.global_entity_registry:
# Use original relationship type without sanitization
original_type = rel["type"]
# Create clean relationship with only Neo4j fields
clean_rel = {
"id": str(uuid.uuid4()),
"startNode": self.global_entity_registry[start_text]["id"],
"endNode": self.global_entity_registry[end_text]["id"],
"type": original_type, # Use original type preserving semantic meaning
"description": rel.get("description", ""),
"evidence": rel.get("evidence", ""),
"confidence": rel_confidence,
"chunk_id": rel.get("chunk_id", 0),
"source_chunk": rel.get("source_chunk", ""),
"source_file": file_name
}
self.graph_data["relationships"].append(clean_rel)
relationships_added += 1
result = {
"file": file_name,
"status": "success",
"entities_extracted": len(llm_data.get("entities", [])),
"unique_entities_added": entities_added,
"relationships_generated": relationships_added,
"processed_at": datetime.now().isoformat()
}
self.processed_files += 1
logger.info(f"β
Processed {file_name}: {entities_added} new entities, {relationships_added} relationships")
return result
except Exception as e:
logger.error(f"β Error processing {md_file_path}: {e}")
return {
"file": os.path.basename(md_file_path),
"status": "error",
"error": str(e),
"processed_at": datetime.now().isoformat()
}
# STEP 10: Batch File Processing
def process_all_md_files(self, input_dir: str = None, output_path: str = None) -> Dict[str, Any]:
if input_dir is None:
input_dir = "workspace/processed"
if output_path is None:
output_path = os.path.join("workspace/graph_data", "graph-data-initial.json")
# Clean the graph folder before starting fresh processing
graph_dir = os.path.dirname(output_path)
self.clean_graph_folder(graph_dir)
input_path = Path(input_dir)
md_files = list(input_path.glob("**/*.md")) # Include subdirectories
# Ensure output directory exists
os.makedirs(os.path.dirname(output_path), exist_ok=True)
if not md_files:
logger.warning(f"No markdown files found in {input_dir}")
return {"status": "no_files", "message": "No markdown files found"}
logger.info(f"Found {len(md_files)} markdown files to process")
# Reset data structures for a clean batch processing
self.graph_data = {"nodes": [], "relationships": []}
self.global_entity_registry = {} # Reset global registry
self.processed_files = 0
logger.info(f"π Starting document processing with Neo4j format output ({self.llm_provider.upper()})...")
# Process files with progress tracking
results = []
processed_successfully = []
failed_files = []
quota_exceeded_files = []
start_time = time.time()
for i, md_file in enumerate(md_files, 1):
file_start_time = time.time()
logger.info(f"Processing file {i}/{len(md_files)}: {md_file.name}")
# Track registry size before processing
initial_registry_size = len(self.global_entity_registry)
initial_relationship_count = len(self.graph_data["relationships"])
# Process the file
result = self.process_md_file(str(md_file))
results.append(result)
# Track file status for detailed logging
file_status = result.get("status", "unknown")
if file_status == "success":
processed_successfully.append(md_file.name)
elif file_status == "quota_exceeded":
quota_exceeded_files.append(md_file.name)
logger.warning(f"π« QUOTA EXCEEDED - Stopping batch processing at file {i}/{len(md_files)}")
break # Stop processing when quota exceeded
else:
failed_files.append((md_file.name, result.get("error", "Unknown error")))
# Calculate processing metrics
file_time = time.time() - file_start_time
new_entities = len(self.global_entity_registry) - initial_registry_size
new_relationships = len(self.graph_data["relationships"]) - initial_relationship_count
# Show detailed progress information
logger.info(f" File processed in {file_time:.2f}s: {new_entities} new entities, {new_relationships} relationships")
# Show batch progress at regular intervals
if i % 5 == 0 or i == len(md_files):
successful_so_far = sum(1 for r in results if r.get("status") == "success")
elapsed = time.time() - start_time
avg_time = elapsed / i
remaining = avg_time * (len(md_files) - i)
logger.info(f"Progress: {i}/{len(md_files)} files ({successful_so_far} successful)")
logger.info(f" Current stats: {len(self.global_entity_registry)} unique entities, {len(self.graph_data['relationships'])} relationships")
logger.info(f"Time elapsed: {elapsed:.1f}s (avg {avg_time:.1f}s per file, ~{remaining:.1f}s remaining)")
# Generate comprehensive summary with detailed tracking
elapsed = time.time() - start_time
successful = len(processed_successfully)
quota_exceeded = len(quota_exceeded_files)
failed = len(failed_files)
unique_entities = len(self.global_entity_registry)
# Save detailed processing lists
self._save_processing_logs(processed_successfully, quota_exceeded_files, failed_files, output_path)
# Count entity types
entity_types = {}
for entity_info in self.global_entity_registry.values():
entity_type = entity_info["type"]
entity_types[entity_type] = entity_types.get(entity_type, 0) + 1
# Count relationship types
relationship_types = {}
for rel in self.graph_data["relationships"]:
rel_type = rel["type"]
relationship_types[rel_type] = relationship_types.get(rel_type, 0) + 1
summary = {
"status": "completed",
"total_files": len(md_files),
"successful": successful,
"quota_exceeded": quota_exceeded,
"failed": failed,
"unique_entities": unique_entities,
"total_relationships": len(self.graph_data["relationships"]),
"entity_types": entity_types,
"relationship_types": relationship_types,
"processing_time_seconds": elapsed,
"average_time_per_file": elapsed / len(md_files) if md_files else 0,
"model": self.model_name,
"llm_provider": self.llm_provider,
"processed_at": datetime.now().isoformat()
}
logger.info(f"β
Processing complete in {elapsed:.1f}s: {successful}/{len(md_files)} files successful")
if quota_exceeded > 0:
logger.warning(f"π« {quota_exceeded} files hit quota limit")
if failed > 0:
logger.error(f"β {failed} files failed with errors")
logger.info(f"Final stats: {unique_entities} unique entities, {len(self.graph_data['relationships'])} relationships")
# Log entity and relationship type breakdown
logger.info("Entity types:")
for entity_type, count in sorted(entity_types.items(), key=lambda x: x[1], reverse=True)[:10]:
logger.info(f" - {entity_type}: {count}")
logger.info("Relationship types:")
for rel_type, count in sorted(relationship_types.items(), key=lambda x: x[1], reverse=True)[:10]:
logger.info(f" - {rel_type}: {count}")
return summary
# STEP 10.5: Processing Logs Tracking
def _save_processing_logs(self, successful_files: List[str], quota_exceeded_files: List[str], failed_files: List[tuple], output_path: str):
try:
output_dir = Path(output_path).parent
# Save successfully processed files
with open(output_dir / "processed_successfully.txt", 'w', encoding='utf-8') as f:
f.write(f"# Successfully Processed Files ({len(successful_files)} total)\n")
f.write(f"# Generated: {datetime.now().isoformat()}\n\n")
for file_name in successful_files:
f.write(f"{file_name}\n")
# Save quota exceeded files
if quota_exceeded_files:
with open(output_dir / "quota_exceeded_files.txt", 'w', encoding='utf-8') as f:
f.write(f"# Files That Hit Quota Limit ({len(quota_exceeded_files)} total)\n")
f.write(f"# Generated: {datetime.now().isoformat()}\n\n")
for file_name in quota_exceeded_files:
f.write(f"{file_name}\n")
# Save failed files with errors
if failed_files:
with open(output_dir / "failed_files.txt", 'w', encoding='utf-8') as f:
f.write(f"# Files That Failed Processing ({len(failed_files)} total)\n")
f.write(f"# Generated: {datetime.now().isoformat()}\n\n")
for file_name, error in failed_files:
f.write(f"{file_name}: {error}\n")
logger.info(f"π Processing logs saved to {output_dir}")
except Exception as e:
logger.error(f"β Failed to save processing logs: {e}")
# STEP 11: Graph Data Output
def save_graph_data(self, output_path: str = None) -> bool:
if output_path is None:
output_path = os.path.join("workspace/graph_data", "graph-data-initial.json")
try:
# Ensure output directory exists
output_dir = Path(output_path).parent
output_dir.mkdir(parents=True, exist_ok=True)
# Compile final data from global entity registry
final_nodes = []
for semantic_key, entity_info in self.global_entity_registry.items():
entity_id = entity_info["id"]
# Create Neo4j node
node = {
"id": entity_id,
"elementId": entity_id,
"labels": [entity_info["type"]],
"properties": {
"name": entity_info["text"],
"content": entity_info.get("content", ""),
"source": entity_info.get("source_file", ""),
"confidence": entity_info["confidence"],
"created_date": datetime.now().strftime("%Y-%m-%d"),
"extraction_method": self.llm_provider
}
}
final_nodes.append(node)
# Use relationships
final_relationships = self.graph_data["relationships"]
# Prepare final graph data
final_graph = {
"nodes": final_nodes,
"relationships": final_relationships,
"metadata": {
"node_count": len(final_nodes),
"relationship_count": len(final_relationships),
"generated_at": datetime.now().isoformat(),
"generator": "Allycat GraphBuilder",
"llm_provider": self.llm_provider,
"model": self.model_name,
"format_version": "neo4j-2025"
}
}
# Save final graph data
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(final_graph, f, indent=2, ensure_ascii=False)
# Calculate final output size
output_size = os.path.getsize(output_path)
output_size_mb = output_size / (1024 * 1024)
logger.info(f"β
Neo4j graph data saved to {output_path} ({output_size_mb:.2f} MB)")
logger.info(f"Final stats: {len(final_nodes)} nodes, {len(final_relationships)} relationships")
return True
except Exception as e:
logger.error(f"β Error saving graph data: {e}")
return False
# STEP 12: Main Entry Point
def main():
"""Main function to run the content analysis pipeline."""
logger.info(" Starting Content Analysis Pipeline (Cloud-based APIs)")
# Choose LLM provider from environment or default to cerebras
llm_provider = os.getenv("GRAPH_LLM_PROVIDER", "cerebras").lower()
logger.info(f" Using LLM provider: {llm_provider.upper()}")
# Validate provider choice
valid_providers = ["cerebras", "gemini"]
if llm_provider not in valid_providers:
logger.warning(f"β οΈ Invalid provider '{llm_provider}'. Using 'cerebras' (default)")
llm_provider = "cerebras"
try:
analyzer = GraphBuilder(llm_provider=llm_provider)
# Normal processing
summary = analyzer.process_all_md_files()
if summary["status"] == "no_files":
logger.warning("β οΈ No files to process")
return 1
if analyzer.save_graph_data():
logger.info("β
Content Analysis completed successfully!")
logger.info(f" Results: {summary['successful']}/{summary['total_files']} files processed")
logger.info(f"Graph: {summary['unique_entities']} nodes, {summary['total_relationships']} relationships")
logger.info(f"Model used: {analyzer.model_name} via {llm_provider.upper()}")
return 0
else:
logger.error("β Failed to save graph data")
return 1
except Exception as e:
logger.error(f"β Pipeline failed: {e}")
return 1
if __name__ == "__main__":
exit(main()) |