Spaces:
Sleeping
Sleeping
First commit
Browse files- .gitignore +1 -0
- README.md +1 -1
- app.py +78 -0
- requirements.txt +4 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.devcontainer/*
|
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: π
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: blue
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Tokenizers Comparator
|
| 3 |
emoji: π
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: blue
|
app.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This application creates a Gradio interface for testing the speed of different tokenizers
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import tiktoken
|
| 4 |
+
import time
|
| 5 |
+
from transformers import AutoTokenizer
|
| 6 |
+
|
| 7 |
+
EXAMPLE_MODELS: list = ["gpt2"]
|
| 8 |
+
TOKENIZERS : dict = {k: v for k, v in zip(EXAMPLE_MODELS, [AutoTokenizer.from_pretrained(m) for m in EXAMPLE_MODELS])}
|
| 9 |
+
|
| 10 |
+
def get_tokenizer(model_name):
|
| 11 |
+
if model_name in EXAMPLE_MODELS:
|
| 12 |
+
return TOKENIZERS[model_name]
|
| 13 |
+
else:
|
| 14 |
+
return tiktoken.get_encoding("gpt2")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def times_faster(time_1, time_2):
|
| 18 |
+
return (time_2 / time_1) * 100
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def run_hf_tokenizer(model_name, text):
|
| 22 |
+
tokenizer = get_tokenizer(model_name)
|
| 23 |
+
start = time.time()
|
| 24 |
+
encoded = tokenizer.encode(text)
|
| 25 |
+
end = time.time()
|
| 26 |
+
elapsed_time = end - start
|
| 27 |
+
print(f"Encoded: {encoded}")
|
| 28 |
+
print(f"Time taken by HF tokenizer: {elapsed_time}")
|
| 29 |
+
return elapsed_time, encoded
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def run_openai_tokenizer(text):
|
| 33 |
+
tokenizer = tiktoken.get_encoding("gpt2")
|
| 34 |
+
start = time.time()
|
| 35 |
+
encoded = tokenizer.encode(text)
|
| 36 |
+
end = time.time()
|
| 37 |
+
elapsed_time = end - start
|
| 38 |
+
print(f"Encoded: {encoded}")
|
| 39 |
+
print(f"Time taken by OpenAI tokenizer: {elapsed_time}")
|
| 40 |
+
return elapsed_time, encoded
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def run_tokenizers(model_name, text):
|
| 44 |
+
hf_time, hf_encoded = run_hf_tokenizer(model_name, text)
|
| 45 |
+
openai_time, openai_encoded = run_openai_tokenizer(text)
|
| 46 |
+
return {
|
| 47 |
+
"HF Tokenizer": {
|
| 48 |
+
"Time Taken": hf_time,
|
| 49 |
+
"Num tokens": len(hf_encoded)
|
| 50 |
+
},
|
| 51 |
+
"OpenAI Tokenizer": {
|
| 52 |
+
"Time Taken": openai_time,
|
| 53 |
+
"Num Tokens": len(openai_encoded)
|
| 54 |
+
},
|
| 55 |
+
"Times Faster": str(times_faster(hf_time, openai_time)) + "%"
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
iface = gr.Interface(fn=run_tokenizers,
|
| 59 |
+
inputs=[gr.components.Dropdown(EXAMPLE_MODELS, label="Model Name"),
|
| 60 |
+
gr.components.Textbox(lines=10, label="Text")],
|
| 61 |
+
outputs="json",
|
| 62 |
+
title="OpenAI Tokenizer vs HF Tokenizers Speed Test",
|
| 63 |
+
examples = [
|
| 64 |
+
["gpt2", "This is a test of the OpenAI tokenizer vs the HF tokenizer"],
|
| 65 |
+
["gpt2", """
|
| 66 |
+
State-of-the-art Machine Learning for PyTorch, TensorFlow, and JAX.
|
| 67 |
+
|
| 68 |
+
π€ Transformers provides APIs and tools to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities, such as:
|
| 69 |
+
|
| 70 |
+
π Natural Language Processing: text classification, named entity recognition, question answering, language modeling, summarization, translation, multiple choice, and text generation.
|
| 71 |
+
πΌοΈ Computer Vision: image classification, object detection, and segmentation.
|
| 72 |
+
π£οΈ Audio: automatic speech recognition and audio classification.
|
| 73 |
+
π Multimodal: table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
|
| 74 |
+
"""]
|
| 75 |
+
]
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
transformers
|
| 3 |
+
tokenizers
|
| 4 |
+
tiktoken
|