Spaces:
Runtime error
Runtime error
Jim Eric Skogman
commited on
Initial commit
Browse files- app.py +55 -0
- inference.py +103 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from inference import load_models, cache_path
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from os import path
|
| 7 |
+
|
| 8 |
+
canvas_size = 512
|
| 9 |
+
|
| 10 |
+
if not path.exists(cache_path):
|
| 11 |
+
os.makedirs(cache_path, exist_ok=True)
|
| 12 |
+
|
| 13 |
+
with gr.Blocks() as demo:
|
| 14 |
+
infer = load_models()
|
| 15 |
+
|
| 16 |
+
with gr.Column():
|
| 17 |
+
with gr.Row():
|
| 18 |
+
with gr.Column():
|
| 19 |
+
s = gr.Slider(label="steps", minimum=4, maximum=8, step=1, value=4, interactive=True)
|
| 20 |
+
c = gr.Slider(label="cfg", minimum=0.1, maximum=3, step=0.1, value=1, interactive=True)
|
| 21 |
+
i_s = gr.Slider(label="sketch strength", minimum=0.1, maximum=0.9, step=0.1, value=0.9, interactive=True)
|
| 22 |
+
with gr.Column():
|
| 23 |
+
mod = gr.Text(label="Model HuggingFace id (after changing this wait until the model downloads in the console)", value="Lykon/dreamshaper-7", interactive=True)
|
| 24 |
+
t = gr.Text(label="Prompt", value="Scary warewolf, 8K, realistic, colorful, long sharp teeth, splash art", interactive=True)
|
| 25 |
+
se = gr.Number(label="seed", value=1337, interactive=True)
|
| 26 |
+
with gr.Row(equal_height=True):
|
| 27 |
+
i = gr.Image(source="canvas", tool="color-sketch", shape=(canvas_size, canvas_size), width=canvas_size, height=canvas_size, type="pil")
|
| 28 |
+
o = gr.Image(width=canvas_size, height=canvas_size)
|
| 29 |
+
|
| 30 |
+
def process_image(p, im, steps, cfg, image_strength, seed):
|
| 31 |
+
if not im:
|
| 32 |
+
return Image.new("RGB", (canvas_size, canvas_size))
|
| 33 |
+
return infer(
|
| 34 |
+
prompt=p,
|
| 35 |
+
image=im,
|
| 36 |
+
num_inference_steps=steps,
|
| 37 |
+
guidance_scale=cfg,
|
| 38 |
+
strength=image_strength,
|
| 39 |
+
seed=int(seed)
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
reactive_controls = [t, i, s, c, i_s, se]
|
| 43 |
+
|
| 44 |
+
for control in reactive_controls:
|
| 45 |
+
control.change(fn=process_image, inputs=reactive_controls, outputs=o)
|
| 46 |
+
|
| 47 |
+
def update_model(model_name):
|
| 48 |
+
global infer
|
| 49 |
+
infer = load_models(model_name)
|
| 50 |
+
|
| 51 |
+
mod.change(fn=update_model, inputs=mod)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
if __name__ == "__main__":
|
| 55 |
+
demo.launch()
|
inference.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from os import path
|
| 4 |
+
from contextlib import nullcontext
|
| 5 |
+
import time
|
| 6 |
+
from sys import platform
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
| 10 |
+
|
| 11 |
+
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
| 12 |
+
os.environ["HF_HUB_CACHE"] = cache_path
|
| 13 |
+
os.environ["HF_HOME"] = cache_path
|
| 14 |
+
is_mac = platform == "darwin"
|
| 15 |
+
|
| 16 |
+
def should_use_fp16():
|
| 17 |
+
if is_mac:
|
| 18 |
+
return True
|
| 19 |
+
|
| 20 |
+
gpu_props = torch.cuda.get_device_properties("cuda")
|
| 21 |
+
|
| 22 |
+
if gpu_props.major < 6:
|
| 23 |
+
return False
|
| 24 |
+
|
| 25 |
+
nvidia_16_series = ["1660", "1650", "1630"]
|
| 26 |
+
|
| 27 |
+
for x in nvidia_16_series:
|
| 28 |
+
if x in gpu_props.name:
|
| 29 |
+
return False
|
| 30 |
+
|
| 31 |
+
return True
|
| 32 |
+
|
| 33 |
+
class timer:
|
| 34 |
+
def __init__(self, method_name="timed process"):
|
| 35 |
+
self.method = method_name
|
| 36 |
+
|
| 37 |
+
def __enter__(self):
|
| 38 |
+
self.start = time.time()
|
| 39 |
+
print(f"{self.method} starts")
|
| 40 |
+
|
| 41 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 42 |
+
end = time.time()
|
| 43 |
+
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def load_models(model_id="Lykon/dreamshaper-7"):
|
| 47 |
+
from diffusers import AutoPipelineForImage2Image, LCMScheduler
|
| 48 |
+
from diffusers.utils import load_image
|
| 49 |
+
|
| 50 |
+
if not is_mac:
|
| 51 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 52 |
+
|
| 53 |
+
use_fp16 = should_use_fp16()
|
| 54 |
+
|
| 55 |
+
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
|
| 56 |
+
|
| 57 |
+
if use_fp16:
|
| 58 |
+
pipe = AutoPipelineForImage2Image.from_pretrained(
|
| 59 |
+
model_id,
|
| 60 |
+
cache_dir=cache_path,
|
| 61 |
+
torch_dtype=torch.float16,
|
| 62 |
+
variant="fp16",
|
| 63 |
+
safety_checker=None
|
| 64 |
+
)
|
| 65 |
+
else:
|
| 66 |
+
pipe = AutoPipelineForImage2Image.from_pretrained(
|
| 67 |
+
model_id,
|
| 68 |
+
cache_dir=cache_path,
|
| 69 |
+
safety_checker=None
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 73 |
+
|
| 74 |
+
pipe.load_lora_weights(lcm_lora_id)
|
| 75 |
+
pipe.fuse_lora()
|
| 76 |
+
|
| 77 |
+
device = "mps" if is_mac else "cuda"
|
| 78 |
+
|
| 79 |
+
pipe.to(device=device)
|
| 80 |
+
|
| 81 |
+
generator = torch.Generator()
|
| 82 |
+
|
| 83 |
+
def infer(
|
| 84 |
+
prompt,
|
| 85 |
+
image,
|
| 86 |
+
num_inference_steps=4,
|
| 87 |
+
guidance_scale=1,
|
| 88 |
+
strength=0.9,
|
| 89 |
+
seed=random.randrange(0, 2**63)
|
| 90 |
+
):
|
| 91 |
+
with torch.inference_mode():
|
| 92 |
+
with torch.autocast("cuda") if device == "cuda" else nullcontext():
|
| 93 |
+
with timer("inference"):
|
| 94 |
+
return pipe(
|
| 95 |
+
prompt=prompt,
|
| 96 |
+
image=load_image(image),
|
| 97 |
+
generator=generator.manual_seed(seed),
|
| 98 |
+
num_inference_steps=num_inference_steps,
|
| 99 |
+
guidance_scale=guidance_scale,
|
| 100 |
+
strength=strength
|
| 101 |
+
).images[0]
|
| 102 |
+
|
| 103 |
+
return infer
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
diffusers
|
| 2 |
+
flask
|
| 3 |
+
torch
|
| 4 |
+
transformers
|
| 5 |
+
accelerate
|
| 6 |
+
pillow
|
| 7 |
+
gradio==3.41.2
|