File size: 11,583 Bytes
8ef403e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#!/usr/bin/env python3
"""

Denormalize Tagg, Tm, and Tmon values from normalized holdout sets.



This script:

1. Loads reference file (tm_holdout_4.csv) to get merck_id and name mapping

2. Loads normalized values from tagg_holdout_normalized.csv, tm_holdout_normalized.csv, and tmon_holdout_normalized.csv

3. Filters to only include antibodies present in reference file

4. Denormalizes the normalized values using utils.py

5. Saves denormalized values to separate CSV files with _denormalized postfix



Note: The tmon file uses column 'tmonset' which represents T_mon_onset (tmon).

"""

import sys
import pandas as pd
import numpy as np
from pathlib import Path
from scipy.stats import pearsonr

# Add src to path for imports
sys.path.append(str(Path(__file__).parent / "src"))

from utils import renormalize, DEFAULT_STATS

def denormalize_temperature_type(normalized_df, reference_df, temp_type, column_name, output_file):
    """

    Denormalize a specific temperature type.

    

    Args:

        normalized_df: DataFrame with normalized values

        reference_df: DataFrame with merck_id and name mapping

        temp_type: Temperature type ('tagg', 'tm', or 'tmon')

        column_name: Name of the column in normalized_df (e.g., 'tagg', 'tm', 'tmonset')

        output_file: Path to output CSV file

    

    Returns:

        DataFrame with denormalized values

    """
    print(f"\n{'='*80}")
    print(f"Processing {temp_type.upper()}")
    print(f"{'='*80}")
    
    # Check if column exists
    if column_name not in normalized_df.columns:
        print(f"ERROR: '{column_name}' column not found!")
        print(f"Available columns: {list(normalized_df.columns)}")
        return None
    
    # Filter normalized_df to only include antibodies present in reference file
    # The 'name' column in normalized_df contains Merck IDs
    print(f"\nFiltering to antibodies present in reference file...")
    filtered_df = normalized_df[normalized_df['name'].isin(reference_df['merck_id'])].copy()
    print(f"  Found {len(filtered_df)} matching antibodies")
    
    if len(filtered_df) == 0:
        print(f"ERROR: No matching antibodies found!")
        print(f"Reference antibodies (merck_id): {reference_df['merck_id'].tolist()}")
        print(f"Normalized antibodies (name): {normalized_df['name'].tolist()}")
        return None
    
    # Merge with reference to get merck_id and name
    merged_df = pd.merge(
        filtered_df[['name', column_name]],
        reference_df[['merck_id', 'name']],
        left_on='name',
        right_on='merck_id',
        how='inner'
    )
    
    # Denormalize the normalized values
    print(f"\nDenormalizing normalized {temp_type.upper()} values...")
    normalized_values = merged_df[column_name].values
    denormalized_values = renormalize(normalized_values, temp_type=temp_type)
    
    # Create output dataframe with merck_id, name, and denormalized value
    output_column = temp_type  # Use 'tmon' instead of 'tmonset' for output
    output_df = pd.DataFrame({
        'merck_id': merged_df['merck_id'],
        'name': merged_df['name_y'],
        output_column: denormalized_values
    })
    
    # Display results
    print(f"\nStatistics used:")
    print(f"  Mean: {DEFAULT_STATS[temp_type]['mean']:.2f}°C")
    print(f"  Std:  {DEFAULT_STATS[temp_type]['std']:.2f}°C")
    
    print(f"\n{'Merck ID':<15} {'Name':<20} {'Normalized':<15} {'Denormalized':<15}")
    print("-" * 65)
    
    for _, row in merged_df.iterrows():
        merck_id = row['merck_id']
        antibody_name = row['name_y']
        normalized_val = row[column_name]
        denormalized_val = output_df[output_df['merck_id'] == merck_id][output_column].values[0]
        print(f"{merck_id:<15} {antibody_name:<20} {normalized_val:<15.4f} {denormalized_val:<15.2f}")
    
    # Summary statistics
    print(f"\nSUMMARY STATISTICS")
    print(f"Mean Denormalized {temp_type.upper()}:     {denormalized_values.mean():.2f}°C")
    print(f"Std Denormalized {temp_type.upper()}:       {denormalized_values.std():.2f}°C")
    print(f"Min Denormalized {temp_type.upper()}:       {denormalized_values.min():.2f}°C")
    print(f"Max Denormalized {temp_type.upper()}:       {denormalized_values.max():.2f}°C")
    
    # Save results to CSV
    output_df.to_csv(output_file, index=False)
    print(f"\nDenormalized values saved to: {output_file}")
    
    return output_df

def compare_tm_values(actual_df, denormalized_df, normalized_df, data_dir):
    """

    Compare actual TM values with denormalized values.

    

    Args:

        actual_df: DataFrame with actual TM values (from tm_holdout_4.csv)

        denormalized_df: DataFrame with denormalized TM values

        normalized_df: DataFrame with normalized TM values

        data_dir: Path to data directory

    

    Returns:

        DataFrame with comparison results

    """
    print(f"\n{'='*80}")
    print("COMPARING ACTUAL vs DENORMALIZED TM VALUES")
    print(f"{'='*80}")
    
    # Merge actual, normalized, and denormalized values
    # First merge actual with normalized (on merck_id = name in normalized_df)
    temp_df = pd.merge(
        actual_df[['merck_id', 'name', 'tm']],
        normalized_df[['name', 'tm']],
        left_on='merck_id',
        right_on='name',
        how='inner',
        suffixes=('_actual', '_normalized')
    )
    
    # Rename columns from first merge
    temp_df = temp_df.rename(columns={
        'tm_actual': 'actual_tm',
        'tm_normalized': 'normalized_tm',
        'name_actual': 'antibody_name'
    })
    
    # Drop duplicate name column if it exists
    if 'name_normalized' in temp_df.columns:
        temp_df = temp_df.drop(columns=['name_normalized'])
    
    # Then merge with denormalized
    merged_df = pd.merge(
        temp_df,
        denormalized_df[['merck_id', 'tm']],
        on='merck_id',
        how='inner'
    )
    
    if len(merged_df) == 0:
        print("ERROR: No matching antibodies found for comparison!")
        return None
    
    # Rename denormalized tm column
    merged_df = merged_df.rename(columns={
        'tm': 'denormalized_tm'
    })
    
    # Calculate errors
    merged_df['error'] = merged_df['denormalized_tm'] - merged_df['actual_tm']
    merged_df['abs_error'] = np.abs(merged_df['error'])
    merged_df['abs_error_percent'] = (merged_df['abs_error'] / merged_df['actual_tm']) * 100
    
    # Display results
    print(f"\nStatistics used for denormalization:")
    print(f"  Mean: {DEFAULT_STATS['tm']['mean']:.2f}°C")
    print(f"  Std:  {DEFAULT_STATS['tm']['std']:.2f}°C")
    
    print(f"\n{'Antibody':<20} {'Merck ID':<12} {'Actual TM':<12} {'Normalized':<12} {'Denormalized':<15} {'Error':<12} {'Abs Error':<12} {'Error %':<10}")
    print("-" * 110)
    
    for _, row in merged_df.iterrows():
        antibody_name = row['antibody_name']
        print(f"{antibody_name:<20} "
              f"{row['merck_id']:<12} "
              f"{row['actual_tm']:<12.2f} "
              f"{row['normalized_tm']:<12.4f} "
              f"{row['denormalized_tm']:<15.2f} "
              f"{row['error']:<12.2f} "
              f"{row['abs_error']:<12.2f} "
              f"{row['abs_error_percent']:<10.2f}")
    
    # Summary statistics
    print(f"\n{'='*80}")
    print("SUMMARY STATISTICS")
    print(f"{'='*80}")
    print(f"\nMean Absolute Error (MAE):     {merged_df['abs_error'].mean():.2f}°C")
    print(f"Root Mean Squared Error (RMSE): {np.sqrt((merged_df['error']**2).mean()):.2f}°C")
    print(f"Mean Absolute Percent Error:    {merged_df['abs_error_percent'].mean():.2f}%")
    print(f"Max Absolute Error:             {merged_df['abs_error'].max():.2f}°C")
    print(f"Min Absolute Error:             {merged_df['abs_error'].min():.2f}°C")
    
    # Pearson correlation
    pearson_corr, pearson_pvalue = pearsonr(merged_df['actual_tm'], merged_df['denormalized_tm'])
    print(f"\nPearson Correlation (r):         {pearson_corr:.4f}")
    print(f"Pearson Correlation p-value:      {pearson_pvalue:.4f}")
    
    # Also show correlation using np.corrcoef for consistency
    correlation = np.corrcoef(merged_df['actual_tm'], merged_df['denormalized_tm'])[0, 1]
    print(f"Correlation (np.corrcoef):        {correlation:.4f}")
    
    # R-squared
    ss_res = np.sum((merged_df['actual_tm'] - merged_df['denormalized_tm'])**2)
    ss_tot = np.sum((merged_df['actual_tm'] - merged_df['actual_tm'].mean())**2)
    r_squared = 1 - (ss_res / ss_tot)
    print(f"R-squared (R²):                  {r_squared:.4f}")
    
    # Save results to CSV
    output_file = data_dir / "tm_comparison_results.csv"
    merged_df.to_csv(output_file, index=False)
    print(f"\nComparison results saved to: {output_file}")
    
    return merged_df

def main():
    # File paths
    data_dir = Path(__file__).parent / "data" / "abmelt"
    reference_file = data_dir / "tm_holdout_4.csv"
    
    normalized_files = {
        'tagg': data_dir / "tagg_holdout_normalized.csv",
        'tm': data_dir / "tm_holdout_normalized.csv",
        'tmon': data_dir / "tmon_holdout_normalized.csv"
    }
    
    output_files = {
        'tagg': data_dir / "tagg_holdout_denormalized.csv",
        'tm': data_dir / "tm_holdout_denormalized.csv",
        'tmon': data_dir / "tmon_holdout_denormalized.csv"
    }
    
    column_names = {
        'tagg': 'tagg',
        'tm': 'tm',
        'tmon': 'tmonset'  # Note: column is named 'tmonset' not 'tmon'
    }
    
    # Load reference file to get merck_id and name mapping
    print("Loading reference file (tm_holdout_4.csv)...")
    reference_df = pd.read_csv(reference_file)
    print(f"  Found {len(reference_df)} antibodies in reference file")
    print(f"  Antibodies: {', '.join(reference_df['merck_id'].tolist())}")
    
    # Process each temperature type
    results = {}
    for temp_type in ['tagg', 'tm', 'tmon']:
        normalized_file = normalized_files[temp_type]
        output_file = output_files[temp_type]
        column_name = column_names[temp_type]
        
        # Load normalized values
        print(f"\n{'='*80}")
        print(f"Loading normalized {temp_type.upper()} values from {normalized_file.name}...")
        normalized_df = pd.read_csv(normalized_file)
        print(f"  Found {len(normalized_df)} antibodies with normalized {temp_type.upper()} values")
        
        # Denormalize
        result_df = denormalize_temperature_type(
            normalized_df, 
            reference_df, 
            temp_type, 
            column_name, 
            output_file
        )
        
        if result_df is not None:
            results[temp_type] = result_df
    
    # Compare actual vs denormalized TM values if TM was processed
    if 'tm' in results:
        # Load normalized TM values for comparison
        normalized_tm_df = pd.read_csv(normalized_files['tm'])
        compare_tm_values(reference_df, results['tm'], normalized_tm_df, data_dir)
    
    # Summary
    print(f"\n{'='*80}")
    print("SUMMARY")
    print(f"{'='*80}")
    print(f"\nSuccessfully denormalized {len(results)} temperature types:")
    for temp_type in results.keys():
        print(f"  - {temp_type.upper()}: {output_files[temp_type].name}")
    
    print(f"\n{'='*80}")

if __name__ == "__main__":
    main()