Spaces:
Running
Running
Commit
·
227c367
1
Parent(s):
ed0bb32
Fixed UI for mobile and the logic/UI for the second page.
Browse files
CrossAttentionCallout.svg
ADDED
|
|
app.py
CHANGED
|
@@ -69,14 +69,27 @@ def encode_image(image, prompt, concepts, seed, layer_start_index, noise_timeste
|
|
| 69 |
|
| 70 |
cross_attention_heatmaps = pipeline_output.cross_attention_maps
|
| 71 |
cross_attention_heatmaps = [heatmap.resize((IMG_SIZE, IMG_SIZE), resample=Image.NEAREST) for heatmap in cross_attention_heatmaps]
|
| 72 |
-
cross_attention_maps_and_labels = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
return output_image, \
|
| 75 |
gr.update(value=output_space_maps_and_labels, columns=len(output_space_maps_and_labels)), \
|
| 76 |
gr.update(value=cross_attention_maps_and_labels, columns=len(cross_attention_maps_and_labels))
|
| 77 |
|
| 78 |
except gr.Error as e:
|
| 79 |
-
return None, gr.update(value=[], columns=1), gr.update(value=[], columns=1)
|
| 80 |
|
| 81 |
|
| 82 |
@spaces.GPU(duration=60)
|
|
@@ -116,7 +129,20 @@ def generate_image(prompt, concepts, seed, layer_start_index, timestep_start_ind
|
|
| 116 |
|
| 117 |
cross_attention_heatmaps = pipeline_output.cross_attention_maps
|
| 118 |
cross_attention_heatmaps = [heatmap.resize((IMG_SIZE, IMG_SIZE), resample=Image.NEAREST) for heatmap in cross_attention_heatmaps]
|
| 119 |
-
cross_attention_maps_and_labels = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
return output_image, \
|
| 122 |
gr.update(value=output_space_maps_and_labels, columns=len(output_space_maps_and_labels)), \
|
|
@@ -145,11 +171,7 @@ with gr.Blocks(
|
|
| 145 |
.input {
|
| 146 |
height: 47px;
|
| 147 |
}
|
| 148 |
-
|
| 149 |
-
flex-direction: column;
|
| 150 |
-
gap: 0px;
|
| 151 |
-
height: 100%;
|
| 152 |
-
}
|
| 153 |
.input-column-label {}
|
| 154 |
.gallery {
|
| 155 |
height: 220px;
|
|
@@ -162,52 +184,49 @@ with gr.Blocks(
|
|
| 162 |
scrollbar-width: thin;
|
| 163 |
scrollbar-color: grey black;
|
| 164 |
}
|
| 165 |
-
|
| 166 |
-
/* Show only on screens wider than 768px (adjust as needed)
|
| 167 |
-
@media (min-width: 1024px) {
|
| 168 |
-
.svg-container {
|
| 169 |
-
min-width: 150px;
|
| 170 |
-
width: 200px;
|
| 171 |
-
padding-top: 540px;
|
| 172 |
-
}
|
| 173 |
-
}
|
| 174 |
|
| 175 |
@media (min-width: 1280px) {
|
| 176 |
-
.svg-container {
|
| 177 |
-
min-width: 200px;
|
| 178 |
-
width: 300px;
|
| 179 |
-
padding-top: 420px;
|
| 180 |
-
}
|
| 181 |
-
}
|
| 182 |
-
@media (min-width: 1530px) {
|
| 183 |
-
.svg-container {
|
| 184 |
-
min-width: 200px;
|
| 185 |
-
width: 300px;
|
| 186 |
-
padding-top: 400px;
|
| 187 |
-
}
|
| 188 |
-
}
|
| 189 |
-
|
| 190 |
-
*/
|
| 191 |
-
|
| 192 |
-
@media (min-width: 1024px) {
|
| 193 |
.svg-container {
|
| 194 |
min-width: 250px;
|
|
|
|
|
|
|
|
|
|
| 195 |
}
|
| 196 |
-
|
| 197 |
width: 250px;
|
| 198 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
}
|
| 200 |
|
| 201 |
-
|
| 202 |
-
@media (max-width: 1024px) {
|
| 203 |
.svg-container {
|
| 204 |
display: none !important;
|
| 205 |
}
|
| 206 |
-
|
| 207 |
display: none;
|
| 208 |
}
|
| 209 |
}
|
| 210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
.header {
|
| 212 |
display: flex;
|
| 213 |
flex-direction: column;
|
|
@@ -241,11 +260,6 @@ with gr.Blocks(
|
|
| 241 |
text-decoration: none;
|
| 242 |
}
|
| 243 |
|
| 244 |
-
.svg-container {
|
| 245 |
-
display: flex;
|
| 246 |
-
justify-content: center;
|
| 247 |
-
align-items: center;
|
| 248 |
-
}
|
| 249 |
|
| 250 |
.caption-label {
|
| 251 |
font-size: 1.15em;
|
|
@@ -415,8 +429,7 @@ with gr.Blocks(
|
|
| 415 |
elem_classes="input"
|
| 416 |
)
|
| 417 |
|
| 418 |
-
with gr.Row(elem_classes="gallery-container", scale=8):
|
| 419 |
-
|
| 420 |
with gr.Column(scale=1, min_width=250):
|
| 421 |
input_image = gr.Image(
|
| 422 |
elem_classes="generated-image",
|
|
@@ -424,9 +437,10 @@ with gr.Blocks(
|
|
| 424 |
interactive=True,
|
| 425 |
type="pil",
|
| 426 |
image_mode="RGB",
|
|
|
|
| 427 |
)
|
| 428 |
|
| 429 |
-
with gr.Column(scale=
|
| 430 |
concept_attention_gallery = gr.Gallery(
|
| 431 |
label="Concept Attention (Ours)",
|
| 432 |
show_label=True,
|
|
@@ -438,7 +452,6 @@ with gr.Blocks(
|
|
| 438 |
elem_id="concept-attention-gallery",
|
| 439 |
# scale=4
|
| 440 |
)
|
| 441 |
-
|
| 442 |
cross_attention_gallery = gr.Gallery(
|
| 443 |
label="Cross Attention",
|
| 444 |
show_label=True,
|
|
@@ -476,7 +489,11 @@ with gr.Blocks(
|
|
| 476 |
|
| 477 |
with gr.Row(scale=4, elem_classes="svg-container"):
|
| 478 |
concept_attention_callout_svg = gr.HTML(
|
| 479 |
-
"<img src='/gradio_api/file=ConceptAttentionCallout.svg'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 480 |
# container=False,
|
| 481 |
)
|
| 482 |
|
|
|
|
| 69 |
|
| 70 |
cross_attention_heatmaps = pipeline_output.cross_attention_maps
|
| 71 |
cross_attention_heatmaps = [heatmap.resize((IMG_SIZE, IMG_SIZE), resample=Image.NEAREST) for heatmap in cross_attention_heatmaps]
|
| 72 |
+
cross_attention_maps_and_labels = []
|
| 73 |
+
prompt_tokens = prompt.split()
|
| 74 |
+
for concept_index in range(len(concepts)):
|
| 75 |
+
concept = concepts[concept_index]
|
| 76 |
+
if concept in prompt_tokens:
|
| 77 |
+
cross_attention_maps_and_labels.append(
|
| 78 |
+
(cross_attention_heatmaps[concept_index], concept)
|
| 79 |
+
)
|
| 80 |
+
else:
|
| 81 |
+
# Exclude this concept because it is only generated due to ConceptAttention's causal attention mechanism
|
| 82 |
+
empty_image = Image.new("RGB", (IMG_SIZE, IMG_SIZE), (39, 39, 42))
|
| 83 |
+
cross_attention_maps_and_labels.append(
|
| 84 |
+
(empty_image, concept)
|
| 85 |
+
)
|
| 86 |
|
| 87 |
return output_image, \
|
| 88 |
gr.update(value=output_space_maps_and_labels, columns=len(output_space_maps_and_labels)), \
|
| 89 |
gr.update(value=cross_attention_maps_and_labels, columns=len(cross_attention_maps_and_labels))
|
| 90 |
|
| 91 |
except gr.Error as e:
|
| 92 |
+
return None, gr.update(value=[], columns=1) # , gr.update(value=[], columns=1)
|
| 93 |
|
| 94 |
|
| 95 |
@spaces.GPU(duration=60)
|
|
|
|
| 129 |
|
| 130 |
cross_attention_heatmaps = pipeline_output.cross_attention_maps
|
| 131 |
cross_attention_heatmaps = [heatmap.resize((IMG_SIZE, IMG_SIZE), resample=Image.NEAREST) for heatmap in cross_attention_heatmaps]
|
| 132 |
+
cross_attention_maps_and_labels = []
|
| 133 |
+
prompt_tokens = prompt.split()
|
| 134 |
+
for concept_index in range(len(concepts)):
|
| 135 |
+
concept = concepts[concept_index]
|
| 136 |
+
if concept in prompt_tokens:
|
| 137 |
+
cross_attention_maps_and_labels.append(
|
| 138 |
+
(cross_attention_heatmaps[concept_index], concept)
|
| 139 |
+
)
|
| 140 |
+
else:
|
| 141 |
+
# Exclude this concept because it is only generated due to ConceptAttention's causal attention mechanism
|
| 142 |
+
empty_image = Image.new("RGB", (IMG_SIZE, IMG_SIZE), (39, 39, 42))
|
| 143 |
+
cross_attention_maps_and_labels.append(
|
| 144 |
+
(empty_image, concept)
|
| 145 |
+
)
|
| 146 |
|
| 147 |
return output_image, \
|
| 148 |
gr.update(value=output_space_maps_and_labels, columns=len(output_space_maps_and_labels)), \
|
|
|
|
| 171 |
.input {
|
| 172 |
height: 47px;
|
| 173 |
}
|
| 174 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
.input-column-label {}
|
| 176 |
.gallery {
|
| 177 |
height: 220px;
|
|
|
|
| 184 |
scrollbar-width: thin;
|
| 185 |
scrollbar-color: grey black;
|
| 186 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
@media (min-width: 1280px) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
.svg-container {
|
| 190 |
min-width: 250px;
|
| 191 |
+
display: flex;
|
| 192 |
+
flex-direction: column;
|
| 193 |
+
padding-top: 340px;
|
| 194 |
}
|
| 195 |
+
.callout {
|
| 196 |
width: 250px;
|
| 197 |
}
|
| 198 |
+
.input-row {
|
| 199 |
+
height: 100px;
|
| 200 |
+
}
|
| 201 |
+
.input-column {
|
| 202 |
+
flex-direction: column;
|
| 203 |
+
gap: 0px;
|
| 204 |
+
height: 100%;
|
| 205 |
+
}
|
| 206 |
}
|
| 207 |
|
| 208 |
+
@media (max-width: 1280px) {
|
|
|
|
| 209 |
.svg-container {
|
| 210 |
display: none !important;
|
| 211 |
}
|
| 212 |
+
.callout {
|
| 213 |
display: none;
|
| 214 |
}
|
| 215 |
}
|
| 216 |
|
| 217 |
+
/*
|
| 218 |
+
@media (max-width: 1024px) {
|
| 219 |
+
.svg-container {
|
| 220 |
+
display: none !important;
|
| 221 |
+
display: flex;
|
| 222 |
+
flex-direction: column;
|
| 223 |
+
}
|
| 224 |
+
.callout {
|
| 225 |
+
display: none;
|
| 226 |
+
}
|
| 227 |
+
}
|
| 228 |
+
*/
|
| 229 |
+
|
| 230 |
.header {
|
| 231 |
display: flex;
|
| 232 |
flex-direction: column;
|
|
|
|
| 260 |
text-decoration: none;
|
| 261 |
}
|
| 262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
.caption-label {
|
| 265 |
font-size: 1.15em;
|
|
|
|
| 429 |
elem_classes="input"
|
| 430 |
)
|
| 431 |
|
| 432 |
+
with gr.Row(elem_classes="gallery-container", scale=8, equal_height=True):
|
|
|
|
| 433 |
with gr.Column(scale=1, min_width=250):
|
| 434 |
input_image = gr.Image(
|
| 435 |
elem_classes="generated-image",
|
|
|
|
| 437 |
interactive=True,
|
| 438 |
type="pil",
|
| 439 |
image_mode="RGB",
|
| 440 |
+
scale=1
|
| 441 |
)
|
| 442 |
|
| 443 |
+
with gr.Column(scale=2):
|
| 444 |
concept_attention_gallery = gr.Gallery(
|
| 445 |
label="Concept Attention (Ours)",
|
| 446 |
show_label=True,
|
|
|
|
| 452 |
elem_id="concept-attention-gallery",
|
| 453 |
# scale=4
|
| 454 |
)
|
|
|
|
| 455 |
cross_attention_gallery = gr.Gallery(
|
| 456 |
label="Cross Attention",
|
| 457 |
show_label=True,
|
|
|
|
| 489 |
|
| 490 |
with gr.Row(scale=4, elem_classes="svg-container"):
|
| 491 |
concept_attention_callout_svg = gr.HTML(
|
| 492 |
+
"<img src='/gradio_api/file=ConceptAttentionCallout.svg' class='callout'/>",
|
| 493 |
+
# container=False,
|
| 494 |
+
)
|
| 495 |
+
cross_attention_callout_svg = gr.HTML(
|
| 496 |
+
"<img src='/gradio_api/file=CrossAttentionCallout.svg' class='callout'/>",
|
| 497 |
# container=False,
|
| 498 |
)
|
| 499 |
|
concept_attention/concept_attention_pipeline.py
CHANGED
|
@@ -29,13 +29,11 @@ def compute_heatmaps_from_vectors(
|
|
| 29 |
layer_indices: list[int],
|
| 30 |
timesteps: list[int] = list(range(4)),
|
| 31 |
softmax: bool = True,
|
| 32 |
-
normalize_concepts: bool =
|
| 33 |
):
|
| 34 |
"""
|
| 35 |
Accepts image vectors and concept vectors. These can be from cross attentions or attention outputs.
|
| 36 |
"""
|
| 37 |
-
print(f"Image vectors shape: {image_vectors.shape}")
|
| 38 |
-
print(f"Concept vectors shape: {concept_vectors.shape}")
|
| 39 |
# Check if there are heads in the input
|
| 40 |
if len(image_vectors.shape) == 6:
|
| 41 |
# Collapse the had dimension
|
|
@@ -139,6 +137,25 @@ class ConceptAttentionFluxPipeline():
|
|
| 139 |
guidance=guidance,
|
| 140 |
)
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
cross_attention_maps = compute_heatmaps_from_vectors(
|
| 143 |
concept_attention_dict["cross_attention_image_vectors"],
|
| 144 |
concept_attention_dict["cross_attention_concept_vectors"],
|
|
@@ -146,6 +163,7 @@ class ConceptAttentionFluxPipeline():
|
|
| 146 |
timesteps=timesteps,
|
| 147 |
softmax=softmax
|
| 148 |
)
|
|
|
|
| 149 |
concept_heatmaps = compute_heatmaps_from_vectors(
|
| 150 |
concept_attention_dict["output_space_image_vectors"],
|
| 151 |
concept_attention_dict["output_space_concept_vectors"],
|
|
@@ -223,8 +241,9 @@ class ConceptAttentionFluxPipeline():
|
|
| 223 |
combined_concept_attention_dict = {
|
| 224 |
"cross_attention_image_vectors": [],
|
| 225 |
"cross_attention_concept_vectors": [],
|
|
|
|
| 226 |
"output_space_image_vectors": [],
|
| 227 |
-
"output_space_concept_vectors": []
|
| 228 |
}
|
| 229 |
print("Sampling")
|
| 230 |
for i in tqdm(range(num_samples)):
|
|
@@ -307,6 +326,26 @@ class ConceptAttentionFluxPipeline():
|
|
| 307 |
softmax=softmax
|
| 308 |
)
|
| 309 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
# # Pull out the concept and image vectors from each block
|
| 311 |
# image_vectors = torch.stack(self.flux_generator.model.image_vectors).squeeze(1)
|
| 312 |
# concept_vectors = torch.stack(self.flux_generator.model.concept_vectors).squeeze(1)
|
|
|
|
| 29 |
layer_indices: list[int],
|
| 30 |
timesteps: list[int] = list(range(4)),
|
| 31 |
softmax: bool = True,
|
| 32 |
+
normalize_concepts: bool = False
|
| 33 |
):
|
| 34 |
"""
|
| 35 |
Accepts image vectors and concept vectors. These can be from cross attentions or attention outputs.
|
| 36 |
"""
|
|
|
|
|
|
|
| 37 |
# Check if there are heads in the input
|
| 38 |
if len(image_vectors.shape) == 6:
|
| 39 |
# Collapse the had dimension
|
|
|
|
| 137 |
guidance=guidance,
|
| 138 |
)
|
| 139 |
|
| 140 |
+
# # cross_attention_maps = concept_attention_dict["cross_attention_maps"]
|
| 141 |
+
# # Apply softmax
|
| 142 |
+
# if softmax:
|
| 143 |
+
# cross_attention_maps = torch.nn.functional.softmax(cross_attention_maps, dim=-2)
|
| 144 |
+
# # Pull out the timesteps and layers
|
| 145 |
+
# cross_attention_maps = cross_attention_maps[timesteps]
|
| 146 |
+
# cross_attention_maps = cross_attention_maps[:, layer_indices]
|
| 147 |
+
# # Average over time, had, and layers
|
| 148 |
+
# cross_attention_maps = einops.reduce(
|
| 149 |
+
# cross_attention_maps,
|
| 150 |
+
# "time layers batch head concepts patches -> batch concepts patches",
|
| 151 |
+
# reduction="mean"
|
| 152 |
+
# )
|
| 153 |
+
# cross_attention_maps = einops.rearrange(
|
| 154 |
+
# cross_attention_maps,
|
| 155 |
+
# "batch concepts (h w) -> batch concepts h w",
|
| 156 |
+
# h=64,
|
| 157 |
+
# w=64
|
| 158 |
+
# )
|
| 159 |
cross_attention_maps = compute_heatmaps_from_vectors(
|
| 160 |
concept_attention_dict["cross_attention_image_vectors"],
|
| 161 |
concept_attention_dict["cross_attention_concept_vectors"],
|
|
|
|
| 163 |
timesteps=timesteps,
|
| 164 |
softmax=softmax
|
| 165 |
)
|
| 166 |
+
# Compute concept the heatmaps
|
| 167 |
concept_heatmaps = compute_heatmaps_from_vectors(
|
| 168 |
concept_attention_dict["output_space_image_vectors"],
|
| 169 |
concept_attention_dict["output_space_concept_vectors"],
|
|
|
|
| 241 |
combined_concept_attention_dict = {
|
| 242 |
"cross_attention_image_vectors": [],
|
| 243 |
"cross_attention_concept_vectors": [],
|
| 244 |
+
# "cross_attention_maps": [],
|
| 245 |
"output_space_image_vectors": [],
|
| 246 |
+
"output_space_concept_vectors": [],
|
| 247 |
}
|
| 248 |
print("Sampling")
|
| 249 |
for i in tqdm(range(num_samples)):
|
|
|
|
| 326 |
softmax=softmax
|
| 327 |
)
|
| 328 |
|
| 329 |
+
# cross_attention_maps = concept_attention_dict["cross_attention_maps"]
|
| 330 |
+
# # Apply softmax
|
| 331 |
+
# if softmax:
|
| 332 |
+
# cross_attention_maps = torch.nn.functional.softmax(cross_attention_maps, dim=-2)
|
| 333 |
+
# # Pull out the timesteps and layers
|
| 334 |
+
# cross_attention_maps = cross_attention_maps[timesteps]
|
| 335 |
+
# cross_attention_maps = cross_attention_maps[:, layer_indices]
|
| 336 |
+
# # Average over time, had, and layers
|
| 337 |
+
# cross_attention_maps = einops.reduce(
|
| 338 |
+
# cross_attention_maps,
|
| 339 |
+
# "time layers batch head concepts patches -> batch concepts patches",
|
| 340 |
+
# reduction="mean"
|
| 341 |
+
# )
|
| 342 |
+
# cross_attention_maps = einops.rearrange(
|
| 343 |
+
# cross_attention_maps,
|
| 344 |
+
# "batch concepts (h w) -> batch concepts h w",
|
| 345 |
+
# h=64,
|
| 346 |
+
# w=64
|
| 347 |
+
# )
|
| 348 |
+
|
| 349 |
# # Pull out the concept and image vectors from each block
|
| 350 |
# image_vectors = torch.stack(self.flux_generator.model.image_vectors).squeeze(1)
|
| 351 |
# concept_vectors = torch.stack(self.flux_generator.model.concept_vectors).squeeze(1)
|
concept_attention/flux/src/flux/sampling.py
CHANGED
|
@@ -114,6 +114,7 @@ def denoise(
|
|
| 114 |
combined_concept_attention_dict = {
|
| 115 |
"output_space_concept_vectors": [],
|
| 116 |
"output_space_image_vectors": [],
|
|
|
|
| 117 |
"cross_attention_concept_vectors": [],
|
| 118 |
"cross_attention_image_vectors": [],
|
| 119 |
}
|
|
|
|
| 114 |
combined_concept_attention_dict = {
|
| 115 |
"output_space_concept_vectors": [],
|
| 116 |
"output_space_image_vectors": [],
|
| 117 |
+
# "cross_attention_maps": [],
|
| 118 |
"cross_attention_concept_vectors": [],
|
| 119 |
"cross_attention_image_vectors": [],
|
| 120 |
}
|
concept_attention/modified_double_stream_block.py
CHANGED
|
@@ -4,7 +4,6 @@ from torch import nn, Tensor
|
|
| 4 |
import einops
|
| 5 |
import math
|
| 6 |
import torch.nn.functional as F
|
| 7 |
-
import matplotlib.pyplot as plt
|
| 8 |
|
| 9 |
from concept_attention.flux.src.flux.modules.layers import Modulation, SelfAttention
|
| 10 |
from concept_attention.flux.src.flux.math import apply_rope
|
|
@@ -167,7 +166,6 @@ class ModifiedDoubleStreamBlock(nn.Module):
|
|
| 167 |
)
|
| 168 |
# Separate the concept and image attentions
|
| 169 |
concept_attn = concept_image_attn[:, :, :concepts.shape[1]]
|
| 170 |
-
|
| 171 |
# Rearrange the attention tensors
|
| 172 |
txt_attn = einops.rearrange(txt_attn, "B H L D -> B L (H D)")
|
| 173 |
if joint_attention_kwargs is not None and joint_attention_kwargs.get("keep_head_dim", False):
|
|
@@ -177,26 +175,20 @@ class ModifiedDoubleStreamBlock(nn.Module):
|
|
| 177 |
concept_attn = einops.rearrange(concept_attn, "B H L D -> B L (H D)")
|
| 178 |
img_attn = einops.rearrange(img_attn, "B H L D -> B L (H D)")
|
| 179 |
|
| 180 |
-
concept_attention_dict = {
|
| 181 |
-
"output_space_concept_vectors": concept_attn,
|
| 182 |
-
"output_space_image_vectors": img_attn,
|
| 183 |
-
"cross_attention_concept_vectors": concept_q,
|
| 184 |
-
"cross_attention_image_vectors": img_q
|
| 185 |
-
}
|
| 186 |
-
|
| 187 |
# # Compute the cross attentions
|
| 188 |
# cross_attention_maps = einops.einsum(
|
| 189 |
# concept_q,
|
| 190 |
# img_q,
|
| 191 |
# "batch head concepts dim, batch had patches dim -> batch head concepts patches"
|
| 192 |
# )
|
| 193 |
-
#
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
| 200 |
# Do the block updates
|
| 201 |
# Calculate the img blocks
|
| 202 |
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
|
|
|
| 4 |
import einops
|
| 5 |
import math
|
| 6 |
import torch.nn.functional as F
|
|
|
|
| 7 |
|
| 8 |
from concept_attention.flux.src.flux.modules.layers import Modulation, SelfAttention
|
| 9 |
from concept_attention.flux.src.flux.math import apply_rope
|
|
|
|
| 166 |
)
|
| 167 |
# Separate the concept and image attentions
|
| 168 |
concept_attn = concept_image_attn[:, :, :concepts.shape[1]]
|
|
|
|
| 169 |
# Rearrange the attention tensors
|
| 170 |
txt_attn = einops.rearrange(txt_attn, "B H L D -> B L (H D)")
|
| 171 |
if joint_attention_kwargs is not None and joint_attention_kwargs.get("keep_head_dim", False):
|
|
|
|
| 175 |
concept_attn = einops.rearrange(concept_attn, "B H L D -> B L (H D)")
|
| 176 |
img_attn = einops.rearrange(img_attn, "B H L D -> B L (H D)")
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
# # Compute the cross attentions
|
| 179 |
# cross_attention_maps = einops.einsum(
|
| 180 |
# concept_q,
|
| 181 |
# img_q,
|
| 182 |
# "batch head concepts dim, batch had patches dim -> batch head concepts patches"
|
| 183 |
# )
|
| 184 |
+
# Collect all of the concept attention information
|
| 185 |
+
concept_attention_dict = {
|
| 186 |
+
"output_space_concept_vectors": concept_attn.detach(),
|
| 187 |
+
"output_space_image_vectors": img_attn.detach(),
|
| 188 |
+
# "cross_attention_maps": cross_attention_maps.detach(),
|
| 189 |
+
"cross_attention_concept_vectors": concept_q.detach(),
|
| 190 |
+
"cross_attention_image_vectors": img_q.detach()
|
| 191 |
+
}
|
| 192 |
# Do the block updates
|
| 193 |
# Calculate the img blocks
|
| 194 |
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
concept_attention/modified_flux_dit.py
CHANGED
|
@@ -122,8 +122,9 @@ class ModifiedFluxDiT(nn.Module):
|
|
| 122 |
combined_concept_attention_dict = {
|
| 123 |
"output_space_concept_vectors": [],
|
| 124 |
"output_space_image_vectors": [],
|
|
|
|
| 125 |
"cross_attention_concept_vectors": [],
|
| 126 |
-
"cross_attention_image_vectors": []
|
| 127 |
}
|
| 128 |
for block in self.double_blocks:
|
| 129 |
img, txt, concepts, concept_attention_dict = block(
|
|
|
|
| 122 |
combined_concept_attention_dict = {
|
| 123 |
"output_space_concept_vectors": [],
|
| 124 |
"output_space_image_vectors": [],
|
| 125 |
+
# "cross_attention_maps": [],
|
| 126 |
"cross_attention_concept_vectors": [],
|
| 127 |
+
"cross_attention_image_vectors": [],
|
| 128 |
}
|
| 129 |
for block in self.double_blocks:
|
| 130 |
img, txt, concepts, concept_attention_dict = block(
|