Spaces:
Build error
Build error
File size: 7,570 Bytes
9b4ef96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
#!/usr/bin/env python3
"""
Script untuk fine-tuning model Llama 3.1 8B dengan LoRA
"""
import os
import sys
import yaml
import json
import torch
from pathlib import Path
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from peft import (
LoraConfig,
get_peft_model,
TaskType,
prepare_model_for_kbit_training
)
from datasets import Dataset
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def load_config(config_path):
"""Load configuration from YAML file"""
try:
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
return config
except Exception as e:
logger.error(f"Error loading config: {e}")
return None
def load_model_and_tokenizer(config):
"""Load base model and tokenizer"""
model_path = config['model_path']
logger.info(f"Loading model from: {model_path}")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code=True,
padding_side="right"
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
# Prepare model for k-bit training
model = prepare_model_for_kbit_training(model)
return model, tokenizer
def setup_lora_config(config):
"""Setup LoRA configuration"""
lora_config = config['lora_config']
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=lora_config['r'],
lora_alpha=lora_config['lora_alpha'],
lora_dropout=lora_config['lora_dropout'],
target_modules=lora_config['target_modules'],
bias="none",
)
return peft_config
def prepare_dataset(data_path, tokenizer, max_length=512):
"""Prepare dataset for training"""
logger.info(f"Loading dataset from: {data_path}")
# Load your dataset here
# Support for JSONL format (one JSON object per line)
if data_path.endswith('.jsonl'):
# Read JSONL file line by line
data = []
with open(data_path, 'r', encoding='utf-8') as f:
for line_num, line in enumerate(f, 1):
line = line.strip()
if line:
try:
json_obj = json.loads(line)
data.append(json_obj)
except json.JSONDecodeError as e:
logger.warning(f"Invalid JSON at line {line_num}: {e}")
continue
if not data:
raise ValueError("No valid JSON objects found in JSONL file")
# Convert to Dataset
dataset = Dataset.from_list(data)
logger.info(f"Loaded {len(dataset)} samples from JSONL file")
elif data_path.endswith('.json'):
dataset = Dataset.from_json(data_path)
elif data_path.endswith('.csv'):
dataset = Dataset.from_csv(data_path)
else:
raise ValueError("Unsupported data format. Use .jsonl, .json, or .csv")
# Validate dataset structure
if 'text' not in dataset.column_names:
logger.warning("Column 'text' not found in dataset")
logger.info(f"Available columns: {dataset.column_names}")
# Try to find alternative text column
text_columns = [col for col in dataset.column_names if 'text' in col.lower() or 'content' in col.lower()]
if text_columns:
logger.info(f"Found potential text columns: {text_columns}")
# Use first found text column
text_column = text_columns[0]
else:
raise ValueError("No text column found. Dataset must contain a 'text' column or similar")
else:
text_column = 'text'
def tokenize_function(examples):
# Tokenize the texts
tokenized = tokenizer(
examples[text_column],
truncation=True,
padding=True,
max_length=max_length,
return_tensors="pt"
)
return tokenized
# Tokenize dataset
tokenized_dataset = dataset.map(
tokenize_function,
batched=True,
remove_columns=dataset.column_names
)
return tokenized_dataset
def train_model(model, tokenizer, dataset, config, output_dir):
"""Train the model with LoRA"""
training_config = config['training_config']
# Setup training arguments
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=training_config['num_epochs'],
per_device_train_batch_size=training_config['batch_size'],
gradient_accumulation_steps=training_config['gradient_accumulation_steps'],
learning_rate=training_config['learning_rate'],
warmup_steps=training_config['warmup_steps'],
save_steps=training_config['save_steps'],
eval_steps=training_config['eval_steps'],
logging_steps=10,
save_total_limit=3,
prediction_loss_only=True,
remove_unused_columns=False,
push_to_hub=False,
report_to=None,
)
# Setup data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False,
)
# Setup trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
data_collator=data_collator,
tokenizer=tokenizer,
)
# Start training
logger.info("Starting training...")
trainer.train()
# Save the model
trainer.save_model()
logger.info(f"Model saved to: {output_dir}")
def main():
print("🚀 LoRA Fine-tuning - Llama 3.1 8B")
print("=" * 50)
# Load configuration
config_path = "configs/llama_config.yaml"
if not os.path.exists(config_path):
print(f"❌ Config file tidak ditemukan: {config_path}")
print("Jalankan download_model.py terlebih dahulu")
sys.exit(1)
config = load_config(config_path)
if not config:
sys.exit(1)
# Setup paths
output_dir = Path("models/finetuned-llama-lora")
output_dir.mkdir(parents=True, exist_ok=True)
# Load model and tokenizer
print("1️⃣ Loading model and tokenizer...")
model, tokenizer = load_model_and_tokenizer(config)
# Setup LoRA
print("2️⃣ Setting up LoRA configuration...")
peft_config = setup_lora_config(config)
model = get_peft_model(model, peft_config)
# Print trainable parameters
model.print_trainable_parameters()
# Prepare dataset (placeholder - replace with your data)
print("3️⃣ Preparing dataset...")
data_path = "data/training_data.jsonl" # Default to JSONL format
if not os.path.exists(data_path):
print(f"⚠️ Data file tidak ditemukan: {data_path}")
print("Buat dataset terlebih dahulu atau update path di script")
print("Skipping training...")
return
dataset = prepare_dataset(data_path, tokenizer)
# Train model
print("4️⃣ Starting training...")
train_model(model, tokenizer, dataset, config, output_dir)
print("✅ Training selesai!")
print(f"📁 Model tersimpan di: {output_dir}")
if __name__ == "__main__":
main()
|