File size: 5,028 Bytes
9b4ef96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python3
"""
Script untuk download model yang benar-benar open source dan mudah diakses
"""

import os
import sys
import subprocess
from pathlib import Path

def check_huggingface_token():
    """Check if HuggingFace token is available"""
    token = os.getenv('HUGGINGFACE_TOKEN')
    if not token:
        print("❌ HUGGINGFACE_TOKEN tidak ditemukan!")
        print("Silakan set environment variable:")
        print("export HUGGINGFACE_TOKEN='your_token_here'")
        return False
    return True

def download_model(model_name, model_path):
    """Download model menggunakan huggingface-cli"""
    print(f"πŸ“₯ Downloading model: {model_name}")
    print(f"πŸ“ Target directory: {model_path}")
    
    try:
        cmd = [
            "huggingface-cli", "download",
            model_name,
            "--local-dir", str(model_path),
            "--local-dir-use-symlinks", "False"
        ]
        
        result = subprocess.run(cmd, capture_output=True, text=True)
        
        if result.returncode == 0:
            print("βœ… Model berhasil didownload!")
            return True
        else:
            print(f"❌ Error downloading model: {result.stderr}")
            return False
            
    except FileNotFoundError:
        print("❌ huggingface-cli tidak ditemukan!")
        print("Silakan install dengan: pip install huggingface_hub")
        return False

def create_model_config(model_name, model_path):
    """Create model configuration file"""
    config_dir = Path("configs")
    config_dir.mkdir(exist_ok=True)
    
    config_content = f"""# Model Configuration for {model_name}
model_name: "{model_name}"
model_path: "{model_path}"
max_length: 2048
temperature: 0.7
top_p: 0.9
top_k: 40
repetition_penalty: 1.1

# LoRA Configuration
lora_config:
  r: 16
  lora_alpha: 32
  lora_dropout: 0.1
  target_modules: ["q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
  
# Training Configuration
training_config:
  learning_rate: 2e-4
  batch_size: 4
  gradient_accumulation_steps: 4
  num_epochs: 3
  warmup_steps: 100
  save_steps: 500
  eval_steps: 500
"""
    
    config_file = config_dir / f"{model_name.split('/')[-1].lower().replace('-', '_')}_config.yaml"
    with open(config_file, 'w') as f:
        f.write(config_content)
    
    print(f"βœ… Model config created: {config_file}")
    return str(config_file)

def main():
    print("πŸš€ Download Open Source Models")
    print("=" * 50)
    
    if not check_huggingface_token():
        sys.exit(1)
    
    # Model options - truly open source
    models = [
        {
            "name": "microsoft/DialoGPT-medium",
            "path": "models/dialogpt-medium",
            "description": "DialoGPT Medium - Conversational AI model (355M parameters)"
        },
        {
            "name": "distilgpt2",
            "path": "models/distilgpt2",
            "description": "DistilGPT2 - Lightweight GPT-2 model (82M parameters)"
        },
        {
            "name": "gpt2",
            "path": "models/gpt2",
            "description": "GPT-2 - Original GPT-2 model (124M parameters)"
        },
        {
            "name": "EleutherAI/gpt-neo-125M",
            "path": "models/gpt-neo-125m",
            "description": "GPT-Neo 125M - Small but capable model (125M parameters)"
        }
    ]
    
    print("πŸ“‹ Pilih model yang ingin didownload:")
    for i, model in enumerate(models, 1):
        print(f"{i}. {model['name']}")
        print(f"   {model['description']}")
        print()
    
    try:
        choice = int(input("Pilihan (1-4): ").strip())
        if choice < 1 or choice > len(models):
            print("❌ Pilihan tidak valid")
            return
        
        selected_model = models[choice - 1]
        
        print(f"\n🎯 Model yang dipilih: {selected_model['name']}")
        print(f"πŸ“ Deskripsi: {selected_model['description']}")
        
        # Confirm download
        confirm = input("\nLanjutkan download? (y/n): ").strip().lower()
        if confirm not in ['y', 'yes']:
            print("❌ Download dibatalkan")
            return
        
        # Download model
        print(f"\n1️⃣ Downloading model...")
        if download_model(selected_model['name'], selected_model['path']):
            print(f"\n2️⃣ Creating model configuration...")
            config_file = create_model_config(selected_model['name'], selected_model['path'])
            
            print("\n3️⃣ Setup selesai!")
            print(f"\nπŸ“‹ Langkah selanjutnya:")
            print(f"1. Model tersimpan di: {selected_model['path']}")
            print(f"2. Config tersimpan di: {config_file}")
            print("3. Jalankan: python scripts/finetune_lora.py")
            print("4. Atau gunakan Novita AI: python scripts/novita_ai_setup.py")
        
    except ValueError:
        print("❌ Input tidak valid")
    except KeyboardInterrupt:
        print("\nπŸ‘‹ Download dibatalkan")

if __name__ == "__main__":
    main()