Spaces:
Build error
Build error
File size: 9,771 Bytes
ef903ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
#!/usr/bin/env python3
"""
Textilindo AI Assistant - Hugging Face Spaces
"""
from flask import Flask, request, jsonify, render_template
import os
import json
import requests
from difflib import SequenceMatcher
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = Flask(__name__)
def load_system_prompt(default_text):
"""Load system prompt from configs/system_prompt.md if available"""
try:
base_dir = os.path.dirname(__file__)
md_path = os.path.join(base_dir, 'configs', 'system_prompt.md')
if not os.path.exists(md_path):
return default_text
with open(md_path, 'r', encoding='utf-8') as f:
content = f.read()
start = content.find('"""')
end = content.rfind('"""')
if start != -1 and end != -1 and end > start:
return content[start+3:end].strip()
lines = []
for line in content.splitlines():
if line.strip().startswith('#'):
continue
lines.append(line)
cleaned = '\n'.join(lines).strip()
return cleaned or default_text
except Exception:
return default_text
class TextilindoAI:
def __init__(self):
self.system_prompt = os.getenv(
'SYSTEM_PROMPT',
load_system_prompt("You are Textilindo AI Assistant. Be concise, helpful, and use Indonesian.")
)
self.dataset = self.load_all_datasets()
def load_all_datasets(self):
"""Load all available datasets"""
dataset = []
# Try multiple possible data directory paths
possible_data_dirs = [
"data",
"./data",
"/app/data",
os.path.join(os.path.dirname(__file__), "data")
]
data_dir = None
for dir_path in possible_data_dirs:
if os.path.exists(dir_path):
data_dir = dir_path
logger.info(f"Found data directory: {data_dir}")
break
if not data_dir:
logger.warning("No data directory found in any of the expected locations")
return dataset
# Load all JSONL files
try:
for filename in os.listdir(data_dir):
if filename.endswith('.jsonl'):
filepath = os.path.join(data_dir, filename)
try:
with open(filepath, 'r', encoding='utf-8') as f:
for line_num, line in enumerate(f, 1):
line = line.strip()
if line:
try:
data = json.loads(line)
dataset.append(data)
except json.JSONDecodeError as e:
logger.warning(f"Invalid JSON in {filename} line {line_num}: {e}")
continue
logger.info(f"Loaded {filename}: {len([d for d in dataset if d.get('instruction')])} examples")
except Exception as e:
logger.error(f"Error loading {filename}: {e}")
except Exception as e:
logger.error(f"Error reading data directory {data_dir}: {e}")
logger.info(f"Total examples loaded: {len(dataset)}")
return dataset
def find_relevant_context(self, user_query, top_k=3):
"""Find most relevant examples from dataset"""
if not self.dataset:
return []
scores = []
for i, example in enumerate(self.dataset):
instruction = example.get('instruction', '').lower()
output = example.get('output', '').lower()
query = user_query.lower()
instruction_score = SequenceMatcher(None, query, instruction).ratio()
output_score = SequenceMatcher(None, query, output).ratio()
combined_score = (instruction_score * 0.7) + (output_score * 0.3)
scores.append((combined_score, i))
scores.sort(reverse=True)
relevant_examples = []
for score, idx in scores[:top_k]:
if score > 0.1:
relevant_examples.append(self.dataset[idx])
return relevant_examples
def create_context_prompt(self, user_query, relevant_examples):
"""Create a prompt with relevant context"""
if not relevant_examples:
return user_query
context_parts = []
context_parts.append("Berikut adalah beberapa contoh pertanyaan dan jawaban tentang Textilindo:")
context_parts.append("")
for i, example in enumerate(relevant_examples, 1):
instruction = example.get('instruction', '')
output = example.get('output', '')
context_parts.append(f"Contoh {i}:")
context_parts.append(f"Pertanyaan: {instruction}")
context_parts.append(f"Jawaban: {output}")
context_parts.append("")
context_parts.append("Berdasarkan contoh di atas, jawab pertanyaan berikut:")
context_parts.append(f"Pertanyaan: {user_query}")
context_parts.append("Jawaban:")
return "\n".join(context_parts)
def chat(self, message, max_tokens=300, temperature=0.7):
"""Generate response using Hugging Face Spaces"""
relevant_examples = self.find_relevant_context(message, 3)
if relevant_examples:
enhanced_prompt = self.create_context_prompt(message, relevant_examples)
context_used = True
else:
enhanced_prompt = message
context_used = False
# For now, return a simple response
# In production, this would call your HF Space inference endpoint
response = f"Terima kasih atas pertanyaan Anda: {message}. Saya akan membantu Anda dengan informasi tentang Textilindo."
return {
"success": True,
"response": response,
"context_used": context_used,
"relevant_examples_count": len(relevant_examples)
}
# Initialize AI
ai = TextilindoAI()
@app.route('/health', methods=['GET'])
def health_check():
"""Health check endpoint"""
return jsonify({
"status": "healthy",
"service": "Textilindo AI Assistant",
"dataset_loaded": len(ai.dataset) > 0,
"dataset_size": len(ai.dataset)
})
@app.route('/chat', methods=['POST'])
def chat():
"""Main chat endpoint"""
try:
data = request.get_json()
if not data:
return jsonify({
"success": False,
"error": "No JSON data provided"
}), 400
message = data.get('message', '').strip()
if not message:
return jsonify({
"success": False,
"error": "Message is required"
}), 400
# Optional parameters
max_tokens = data.get('max_tokens', 300)
temperature = data.get('temperature', 0.7)
# Process chat
result = ai.chat(message, max_tokens, temperature)
if result["success"]:
return jsonify(result)
else:
return jsonify(result), 500
except Exception as e:
logger.error(f"Error in chat endpoint: {e}")
return jsonify({
"success": False,
"error": f"Internal server error: {str(e)}"
}), 500
@app.route('/stats', methods=['GET'])
def get_stats():
"""Get dataset and system statistics"""
try:
topics = {}
for example in ai.dataset:
metadata = example.get('metadata', {})
topic = metadata.get('topic', 'unknown')
topics[topic] = topics.get(topic, 0) + 1
return jsonify({
"success": True,
"dataset": {
"total_examples": len(ai.dataset),
"topics": topics,
"topics_count": len(topics)
},
"system": {
"api_version": "1.0.0",
"status": "operational"
}
})
except Exception as e:
logger.error(f"Error in stats endpoint: {e}")
return jsonify({
"success": False,
"error": f"Internal server error: {str(e)}"
}), 500
@app.route('/', methods=['GET'])
def root():
"""API root endpoint with documentation"""
return jsonify({
"service": "Textilindo AI Assistant",
"version": "1.0.0",
"description": "AI-powered customer service for Textilindo",
"endpoints": {
"GET /": "API documentation (this endpoint)",
"GET /health": "Health check",
"POST /chat": "Chat with AI",
"GET /stats": "Dataset and system statistics"
},
"usage": {
"chat": {
"method": "POST",
"url": "/chat",
"body": {
"message": "string (required)",
"max_tokens": "integer (optional, default: 300)",
"temperature": "float (optional, default: 0.7)"
}
}
},
"dataset_size": len(ai.dataset)
})
if __name__ == '__main__':
logger.info("Starting Textilindo AI Assistant...")
logger.info(f"Dataset loaded: {len(ai.dataset)} examples")
app.run(
debug=False,
host='0.0.0.0',
port=8080
)
|