File size: 9,771 Bytes
ef903ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#!/usr/bin/env python3
"""
Textilindo AI Assistant - Hugging Face Spaces
"""

from flask import Flask, request, jsonify, render_template
import os
import json
import requests
from difflib import SequenceMatcher
import logging

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = Flask(__name__)

def load_system_prompt(default_text):
    """Load system prompt from configs/system_prompt.md if available"""
    try:
        base_dir = os.path.dirname(__file__)
        md_path = os.path.join(base_dir, 'configs', 'system_prompt.md')
        if not os.path.exists(md_path):
            return default_text
        with open(md_path, 'r', encoding='utf-8') as f:
            content = f.read()
        start = content.find('"""')
        end = content.rfind('"""')
        if start != -1 and end != -1 and end > start:
            return content[start+3:end].strip()
        lines = []
        for line in content.splitlines():
            if line.strip().startswith('#'):
                continue
            lines.append(line)
        cleaned = '\n'.join(lines).strip()
        return cleaned or default_text
    except Exception:
        return default_text

class TextilindoAI:
    def __init__(self):
        self.system_prompt = os.getenv(
            'SYSTEM_PROMPT',
            load_system_prompt("You are Textilindo AI Assistant. Be concise, helpful, and use Indonesian.")
        )
        self.dataset = self.load_all_datasets()
        
    def load_all_datasets(self):
        """Load all available datasets"""
        dataset = []
        
        # Try multiple possible data directory paths
        possible_data_dirs = [
            "data",
            "./data", 
            "/app/data",
            os.path.join(os.path.dirname(__file__), "data")
        ]
        
        data_dir = None
        for dir_path in possible_data_dirs:
            if os.path.exists(dir_path):
                data_dir = dir_path
                logger.info(f"Found data directory: {data_dir}")
                break
        
        if not data_dir:
            logger.warning("No data directory found in any of the expected locations")
            return dataset
        
        # Load all JSONL files
        try:
            for filename in os.listdir(data_dir):
                if filename.endswith('.jsonl'):
                    filepath = os.path.join(data_dir, filename)
                    try:
                        with open(filepath, 'r', encoding='utf-8') as f:
                            for line_num, line in enumerate(f, 1):
                                line = line.strip()
                                if line:
                                    try:
                                        data = json.loads(line)
                                        dataset.append(data)
                                    except json.JSONDecodeError as e:
                                        logger.warning(f"Invalid JSON in {filename} line {line_num}: {e}")
                                        continue
                        logger.info(f"Loaded {filename}: {len([d for d in dataset if d.get('instruction')])} examples")
                    except Exception as e:
                        logger.error(f"Error loading {filename}: {e}")
        except Exception as e:
            logger.error(f"Error reading data directory {data_dir}: {e}")
        
        logger.info(f"Total examples loaded: {len(dataset)}")
        return dataset
    
    def find_relevant_context(self, user_query, top_k=3):
        """Find most relevant examples from dataset"""
        if not self.dataset:
            return []
        
        scores = []
        for i, example in enumerate(self.dataset):
            instruction = example.get('instruction', '').lower()
            output = example.get('output', '').lower()
            query = user_query.lower()
            
            instruction_score = SequenceMatcher(None, query, instruction).ratio()
            output_score = SequenceMatcher(None, query, output).ratio()
            combined_score = (instruction_score * 0.7) + (output_score * 0.3)
            scores.append((combined_score, i))
        
        scores.sort(reverse=True)
        relevant_examples = []
        
        for score, idx in scores[:top_k]:
            if score > 0.1:
                relevant_examples.append(self.dataset[idx])
        
        return relevant_examples
    
    def create_context_prompt(self, user_query, relevant_examples):
        """Create a prompt with relevant context"""
        if not relevant_examples:
            return user_query
        
        context_parts = []
        context_parts.append("Berikut adalah beberapa contoh pertanyaan dan jawaban tentang Textilindo:")
        context_parts.append("")
        
        for i, example in enumerate(relevant_examples, 1):
            instruction = example.get('instruction', '')
            output = example.get('output', '')
            context_parts.append(f"Contoh {i}:")
            context_parts.append(f"Pertanyaan: {instruction}")
            context_parts.append(f"Jawaban: {output}")
            context_parts.append("")
        
        context_parts.append("Berdasarkan contoh di atas, jawab pertanyaan berikut:")
        context_parts.append(f"Pertanyaan: {user_query}")
        context_parts.append("Jawaban:")
        
        return "\n".join(context_parts)
    
    def chat(self, message, max_tokens=300, temperature=0.7):
        """Generate response using Hugging Face Spaces"""
        relevant_examples = self.find_relevant_context(message, 3)
        
        if relevant_examples:
            enhanced_prompt = self.create_context_prompt(message, relevant_examples)
            context_used = True
        else:
            enhanced_prompt = message
            context_used = False
        
        # For now, return a simple response
        # In production, this would call your HF Space inference endpoint
        response = f"Terima kasih atas pertanyaan Anda: {message}. Saya akan membantu Anda dengan informasi tentang Textilindo."
        
        return {
            "success": True,
            "response": response,
            "context_used": context_used,
            "relevant_examples_count": len(relevant_examples)
        }

# Initialize AI
ai = TextilindoAI()

@app.route('/health', methods=['GET'])
def health_check():
    """Health check endpoint"""
    return jsonify({
        "status": "healthy",
        "service": "Textilindo AI Assistant",
        "dataset_loaded": len(ai.dataset) > 0,
        "dataset_size": len(ai.dataset)
    })

@app.route('/chat', methods=['POST'])
def chat():
    """Main chat endpoint"""
    try:
        data = request.get_json()
        
        if not data:
            return jsonify({
                "success": False,
                "error": "No JSON data provided"
            }), 400
        
        message = data.get('message', '').strip()
        if not message:
            return jsonify({
                "success": False,
                "error": "Message is required"
            }), 400
        
        # Optional parameters
        max_tokens = data.get('max_tokens', 300)
        temperature = data.get('temperature', 0.7)
        
        # Process chat
        result = ai.chat(message, max_tokens, temperature)
        
        if result["success"]:
            return jsonify(result)
        else:
            return jsonify(result), 500
            
    except Exception as e:
        logger.error(f"Error in chat endpoint: {e}")
        return jsonify({
            "success": False,
            "error": f"Internal server error: {str(e)}"
        }), 500

@app.route('/stats', methods=['GET'])
def get_stats():
    """Get dataset and system statistics"""
    try:
        topics = {}
        for example in ai.dataset:
            metadata = example.get('metadata', {})
            topic = metadata.get('topic', 'unknown')
            topics[topic] = topics.get(topic, 0) + 1
        
        return jsonify({
            "success": True,
            "dataset": {
                "total_examples": len(ai.dataset),
                "topics": topics,
                "topics_count": len(topics)
            },
            "system": {
                "api_version": "1.0.0",
                "status": "operational"
            }
        })
        
    except Exception as e:
        logger.error(f"Error in stats endpoint: {e}")
        return jsonify({
            "success": False,
            "error": f"Internal server error: {str(e)}"
        }), 500

@app.route('/', methods=['GET'])
def root():
    """API root endpoint with documentation"""
    return jsonify({
        "service": "Textilindo AI Assistant",
        "version": "1.0.0",
        "description": "AI-powered customer service for Textilindo",
        "endpoints": {
            "GET /": "API documentation (this endpoint)",
            "GET /health": "Health check",
            "POST /chat": "Chat with AI",
            "GET /stats": "Dataset and system statistics"
        },
        "usage": {
            "chat": {
                "method": "POST",
                "url": "/chat",
                "body": {
                    "message": "string (required)",
                    "max_tokens": "integer (optional, default: 300)",
                    "temperature": "float (optional, default: 0.7)"
                }
            }
        },
        "dataset_size": len(ai.dataset)
    })

if __name__ == '__main__':
    logger.info("Starting Textilindo AI Assistant...")
    logger.info(f"Dataset loaded: {len(ai.dataset)} examples")
    
    app.run(
        debug=False,
        host='0.0.0.0',
        port=8080
    )