File size: 13,583 Bytes
f4be780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#!/usr/bin/env python3
"""
Feature Availability Module
Categorizes 2,514 features by their availability windows for forecasting.

Purpose: Prevent data leakage by clearly defining what features are available
         at run time for different forecast horizons.

Categories:
1. Full-horizon D+14 (always known): temporal, weather, CNEC outages, LTA
2. Partial D+1 only (masked D+2-D+14): load forecasts
3. Historical only (not available): prices, generation, demand, lags, etc.
"""

from typing import Dict, List, Tuple, Set
import pandas as pd
import numpy as np
from datetime import datetime, timedelta


class FeatureAvailability:
    """
    Defines availability windows for all features in the dataset.

    Availability Horizons:
    - D+14: Available for full 14-day forecast (temporal, weather, outages, LTA)
    - D+1: Available for day-ahead only (load forecasts)
    - D+0: Current value only, forward-filled (LTA)
    - Historical: Not available for future (prices, generation, demand, lags)
    """

    # Feature categories with their availability windows
    AVAILABILITY_WINDOWS = {
        # FULL HORIZON - D+14 (336 hours)
        'temporal': {
            'horizon_hours': float('inf'),  # Always computable
            'description': 'Time-based features (hour, day, month, weekday, etc.)',
            'patterns': ['hour', 'day', 'month', 'weekday', 'year', 'is_weekend'],
            'suffixes': ['_sin', '_cos'],
            'expected_count': 12,
        },
        'weather': {
            'horizon_hours': 336,  # D+14 weather forecasts
            'description': 'Weather forecasts (temp, wind, solar, cloud, pressure)',
            'prefixes': ['temp_', 'wind_', 'wind10m_', 'wind100m_', 'winddir_', 'solar_', 'cloud_', 'pressure_'],
            'expected_count': 375,  # Approximate (52 grid points × ~7 variables)
        },
        'cnec_outages': {
            'horizon_hours': 336,  # D+14+ planned transmission outages
            'description': 'Planned CNEC transmission outages (published weeks ahead)',
            'prefixes': ['outage_cnec_'],
            'expected_count': 176,
        },
        'lta': {
            'horizon_hours': 0,  # D+0 only (current value)
            'description': 'Long-term allocations (forward-filled from D+0)',
            'prefixes': ['lta_'],
            'expected_count': 40,
            'forward_fill': True,  # Special handling: forward-fill current value
        },

        # PARTIAL HORIZON - D+1 only (24 hours)
        'load_forecast': {
            'horizon_hours': 24,  # D+1 only, masked D+2-D+14
            'description': 'Day-ahead load forecasts (published D-1)',
            'prefixes': ['load_forecast_'],
            'expected_count': 12,
            'requires_masking': True,  # Mask hours 25-336
        },

        # HISTORICAL ONLY - Not available for forecasting
        'prices': {
            'horizon_hours': -1,  # Historical only
            'description': 'Day-ahead electricity prices (determined D-1)',
            'prefixes': ['price_'],
            'expected_count': 24,
        },
        'generation': {
            'horizon_hours': -1,
            'description': 'Actual generation by fuel type',
            'prefixes': ['gen_'],
            'expected_count': 183,  # 12 zones × ~15 fuel types
        },
        'demand': {
            'horizon_hours': -1,
            'description': 'Actual electricity demand',
            'prefixes': ['demand_'],
            'expected_count': 24,  # 12 zones + aggregates
        },
        'border_lags': {
            'horizon_hours': -1,
            'description': 'Lagged cross-border flows',
            'patterns': ['_lag_', '_L', 'border_'],
            'expected_count': 264,  # 38 borders × 7 lags (1h, 3h, 6h, 12h, 24h, 168h, 720h)
        },
        'cnec_flows': {
            'horizon_hours': -1,
            'description': 'Historical CNEC flows and constraints',
            'prefixes': ['cnec_'],
            'patterns': ['_flow', '_binding', '_margin', '_ram'],
            'expected_count': 1000,  # Tier-1 CNECs with multiple metrics
        },
        'netpos': {
            'horizon_hours': -1,
            'description': 'Historical net positions',
            'prefixes': ['netpos_'],
            'expected_count': 48,  # 12 zones × 4 metrics
        },
        'system_agg': {
            'horizon_hours': -1,
            'description': 'System-level aggregates',
            'prefixes': ['total_', 'avg_', 'max', 'min', 'std_', 'mean_', 'sum_'],
            'expected_count': 353,  # Various aggregations
        },
        'pumped_storage': {
            'horizon_hours': -1,
            'description': 'Pumped hydro storage generation',
            'prefixes': ['pumped_'],
            'expected_count': 7,  # Countries with pumped storage
        },
        'hydro_storage': {
            'horizon_hours': -1,
            'description': 'Hydro reservoir levels (weekly data)',
            'prefixes': ['hydro_storage_'],
            'expected_count': 7,
        },
    }

    @classmethod
    def categorize_features(cls, columns: List[str]) -> Dict[str, List[str]]:
        """
        Categorize all features by their availability windows.

        Args:
            columns: All column names from dataset

        Returns:
            Dictionary with categories:
            - full_horizon_d14: Available for full 14-day forecast
            - partial_d1: Available D+1 only (requires masking)
            - historical: Not available for forecasting
            - uncategorized: Features that don't match any pattern
        """
        full_horizon_d14 = []
        partial_d1 = []
        historical = []
        uncategorized = []

        for col in columns:
            # Skip metadata columns
            if col == 'timestamp' or col.startswith('target_border_'):
                continue

            categorized = False

            # Check each category
            for category, config in cls.AVAILABILITY_WINDOWS.items():
                if cls._matches_category(col, config):
                    # Assign to appropriate list based on horizon
                    if config['horizon_hours'] >= 336 or config['horizon_hours'] == float('inf'):
                        full_horizon_d14.append(col)
                    elif config['horizon_hours'] == 24:
                        partial_d1.append(col)
                    elif config['horizon_hours'] < 0:
                        historical.append(col)
                    elif config['horizon_hours'] == 0:
                        # LTA: forward-filled, treat as full horizon
                        full_horizon_d14.append(col)

                    categorized = True
                    break

            if not categorized:
                uncategorized.append(col)

        return {
            'full_horizon_d14': full_horizon_d14,
            'partial_d1': partial_d1,
            'historical': historical,
            'uncategorized': uncategorized,
        }

    @classmethod
    def _matches_category(cls, col: str, config: Dict) -> bool:
        """Check if column matches category patterns."""
        # Check exact matches
        if 'patterns' in config:
            if col in config['patterns']:
                return True
            # Check for pattern substring matches
            if any(pattern in col for pattern in config['patterns']):
                return True

        # Check prefixes
        if 'prefixes' in config:
            if any(col.startswith(prefix) for prefix in config['prefixes']):
                return True

        # Check suffixes
        if 'suffixes' in config:
            if any(col.endswith(suffix) for suffix in config['suffixes']):
                return True

        return False

    @classmethod
    def create_availability_mask(
        cls,
        feature_name: str,
        forecast_horizon_hours: int = 336
    ) -> np.ndarray:
        """
        Create binary availability mask for a feature across forecast horizon.

        Args:
            feature_name: Name of the feature
            forecast_horizon_hours: Length of forecast (default 336 = 14 days)

        Returns:
            Binary mask: 1 = available, 0 = masked/unavailable
        """
        # Determine category
        for category, config in cls.AVAILABILITY_WINDOWS.items():
            if cls._matches_category(feature_name, config):
                horizon = config['horizon_hours']

                # Full horizon or infinite (temporal)
                if horizon >= forecast_horizon_hours or horizon == float('inf'):
                    return np.ones(forecast_horizon_hours, dtype=np.float32)

                # Partial horizon (e.g., D+1 = 24 hours)
                elif horizon > 0:
                    mask = np.zeros(forecast_horizon_hours, dtype=np.float32)
                    mask[:int(horizon)] = 1.0
                    return mask

                # Forward-fill (LTA: D+0)
                elif horizon == 0:
                    return np.ones(forecast_horizon_hours, dtype=np.float32)

                # Historical only
                else:
                    return np.zeros(forecast_horizon_hours, dtype=np.float32)

        # Unknown feature: assume historical (conservative)
        return np.zeros(forecast_horizon_hours, dtype=np.float32)

    @classmethod
    def validate_categorization(
        cls,
        categories: Dict[str, List[str]],
        verbose: bool = True
    ) -> Tuple[bool, List[str]]:
        """
        Validate feature categorization against expected counts.

        Args:
            categories: Output from categorize_features()
            verbose: Print validation details

        Returns:
            (is_valid, warnings)
        """
        warnings = []

        # Total feature count (excl. timestamp + 38 targets)
        total_features = sum(len(v) for v in categories.values())
        expected_total = 2514  # 2,553 columns - 1 timestamp - 38 targets

        if total_features != expected_total:
            warnings.append(
                f"Feature count mismatch: {total_features} vs expected {expected_total}"
            )

        # Check full-horizon D+14 features
        full_d14 = len(categories['full_horizon_d14'])
        # Expected: temporal (12) + weather (~375) + outages (176) + LTA (40) = ~603
        if full_d14 < 200 or full_d14 > 700:
            warnings.append(
                f"Full-horizon D+14 count unusual: {full_d14} (expected ~240-640)"
            )

        # Check partial D+1 features
        partial_d1 = len(categories['partial_d1'])
        if partial_d1 != 12:
            warnings.append(
                f"Partial D+1 count: {partial_d1} (expected 12 load forecasts)"
            )

        # Check uncategorized
        if categories['uncategorized']:
            warnings.append(
                f"Uncategorized features: {len(categories['uncategorized'])} "
                f"(first 5: {categories['uncategorized'][:5]})"
            )

        if verbose:
            print("="*60)
            print("FEATURE CATEGORIZATION VALIDATION")
            print("="*60)
            print(f"Full-horizon D+14:  {len(categories['full_horizon_d14']):4d} features")
            print(f"Partial D+1:        {len(categories['partial_d1']):4d} features")
            print(f"Historical only:    {len(categories['historical']):4d} features")
            print(f"Uncategorized:      {len(categories['uncategorized']):4d} features")
            print(f"Total:              {total_features:4d} features")

            if warnings:
                print("\n[!] WARNINGS:")
                for w in warnings:
                    print(f"    - {w}")
            else:
                print("\n[OK] Validation passed!")
            print("="*60)

        return len(warnings) == 0, warnings

    @classmethod
    def get_category_summary(cls, categories: Dict[str, List[str]]) -> pd.DataFrame:
        """
        Generate summary table of feature categorization.

        Returns:
            DataFrame with category, count, availability, and sample features
        """
        summary = []

        # Full-horizon D+14
        summary.append({
            'Category': 'Full-horizon D+14',
            'Count': len(categories['full_horizon_d14']),
            'Availability': 'D+1 to D+14 (336 hours)',
            'Masking': 'None',
            'Sample Features': ', '.join(categories['full_horizon_d14'][:3]),
        })

        # Partial D+1
        summary.append({
            'Category': 'Partial D+1',
            'Count': len(categories['partial_d1']),
            'Availability': 'D+1 only (24 hours)',
            'Masking': 'Mask D+2 to D+14',
            'Sample Features': ', '.join(categories['partial_d1'][:3]),
        })

        # Historical
        summary.append({
            'Category': 'Historical only',
            'Count': len(categories['historical']),
            'Availability': 'Not available for forecasting',
            'Masking': 'All zeros',
            'Sample Features': ', '.join(categories['historical'][:3]),
        })

        # Uncategorized
        if categories['uncategorized']:
            summary.append({
                'Category': 'Uncategorized',
                'Count': len(categories['uncategorized']),
                'Availability': 'Unknown (conservative: historical)',
                'Masking': 'All zeros (conservative)',
                'Sample Features': ', '.join(categories['uncategorized'][:3]),
            })

        return pd.DataFrame(summary)