Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,761 Bytes
9fe90fa 97608ef 10eab12 88079b8 042a8b6 88079b8 10eab12 97608ef 88079b8 97608ef 10eab12 88079b8 10eab12 88079b8 97608ef 10eab12 97608ef 10eab12 97608ef 10eab12 97608ef 10eab12 97608ef 10eab12 97608ef 4d96bf6 97608ef 042a8b6 10eab12 042a8b6 10eab12 042a8b6 10eab12 97608ef 10eab12 97608ef 10eab12 042a8b6 10eab12 042a8b6 10eab12 97608ef 393fc4f dccbdc3 042a8b6 dccbdc3 e256a15 4d96bf6 24bb430 4d96bf6 ad595d0 4d96bf6 ad595d0 4d96bf6 ad595d0 24bb430 e256a15 393fc4f ad6722d 393fc4f 042a8b6 393fc4f 24bb430 393fc4f 24bb430 393fc4f 24bb430 393fc4f 24bb430 393fc4f 4d96bf6 aa6d576 dc155d4 10eab12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import os
import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, Int8WeightOnlyConfig
import aoti
# =========================================================
# MODEL CONFIGURATION
# =========================================================
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
HF_TOKEN = os.environ.get("HF_TOKEN")
MAX_DIM = 832
MIN_DIM = 480
SQUARE_DIM = 640
MULTIPLE_OF = 16
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 7720
MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
# =========================================================
# LOAD PIPELINE
# =========================================================
print("Loading pipeline components...")
# Load models in bfloat16
transformer = WanTransformer3DModel.from_pretrained(
MODEL_ID,
subfolder="transformer",
torch_dtype=torch.bfloat16,
token=HF_TOKEN
)
transformer_2 = WanTransformer3DModel.from_pretrained(
MODEL_ID,
subfolder="transformer_2",
torch_dtype=torch.bfloat16,
token=HF_TOKEN
)
print("Assembling pipeline...")
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID,
transformer=transformer,
transformer_2=transformer_2,
torch_dtype=torch.bfloat16,
token=HF_TOKEN
)
print("Moving to CUDA...")
pipe = pipe.to("cuda")
# =========================================================
# LOAD LORA ADAPTERS
# =========================================================
print("Loading LoRA adapters...")
try:
pipe.load_lora_weights(
"Kijai/WanVideo_comfy",
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
adapter_name="lightx2v"
)
pipe.load_lora_weights(
"Kijai/WanVideo_comfy",
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
adapter_name="lightx2v_2",
load_into_transformer_2=True
)
pipe.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
pipe.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
pipe.unload_lora_weights()
print("LoRA loaded and fused successfully.")
except Exception as e:
print(f"Warning: Failed to load LoRA. Continuing without it. Error: {e}")
# =========================================================
# QUANTIZATION & AOT OPTIMIZATION
# =========================================================
print("Applying quantization...")
torch.cuda.empty_cache()
gc.collect()
try:
quantize_(pipe.text_encoder, Int8WeightOnlyConfig())
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig())
print("Loading AOTI blocks...")
aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da')
aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da')
except Exception as e:
print(f"Warning: Quantization/AOTI failed. Running in standard mode might OOM. Error: {e}")
# =========================================================
# DEFAULT PROMPTS
# =========================================================
default_prompt_i2v = "Make this image come alive with dynamic, cinematic human motion. Create smooth, natural, lifelike animation with fluid transitions, expressive body movement, realistic physics, and elegant camera flow. Deliver a polished, high-quality motion style that feels immersive, artistic, and visually captivating."
default_negative_prompt = (
"low quality, worst quality, motion artifacts, unstable motion, jitter, frame jitter, wobbling limbs, motion distortion, inconsistent movement, robotic movement, animation-like motion, awkward transitions, incorrect body mechanics, unnatural posing, off-balance poses, broken motion paths, frozen frames, duplicated frames, frame skipping, warped motion, stretching artifacts bad anatomy, incorrect proportions, deformed body, twisted torso, broken joints, dislocated limbs, distorted neck, unnatural spine curvature, malformed hands, extra fingers, missing fingers, fused fingers, distorted legs, extra limbs, collapsed feet, floating feet, foot sliding, foot jitter, backward walking, unnatural gait blurry details, long exposure blur, ghosting, shadow trails, smearing, washed-out colors, overexposure, underexposure, excessive contrast, blown highlights, poorly rendered clothing, fabric glitches, texture warping, clothing merging with body, incorrect cloth physics ugly background, cluttered scene, crowded background, random objects, unwanted text, subtitles, logos, graffiti, grain, noise, static artifacts, compression noise, jpeg artifacts, image-like stillness, painting-like look, cartoon texture, low-resolution textures"
)
# =========================================================
# IMAGE RESIZING LOGIC
# =========================================================
def resize_image(image: Image.Image) -> Image.Image:
width, height = image.size
if width == height:
return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)
aspect_ratio = width / height
MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM
MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM
image_to_resize = image
if aspect_ratio > MAX_ASPECT_RATIO:
crop_width = int(round(height * MAX_ASPECT_RATIO))
left = (width - crop_width) // 2
image_to_resize = image.crop((left, 0, left + crop_width, height))
elif aspect_ratio < MIN_ASPECT_RATIO:
crop_height = int(round(width / MIN_ASPECT_RATIO))
top = (height - crop_height) // 2
image_to_resize = image.crop((0, top, width, top + crop_height))
if width > height:
target_w = MAX_DIM
target_h = int(round(target_w / aspect_ratio))
else:
target_h = MAX_DIM
target_w = int(round(target_h * aspect_ratio))
final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
final_w = max(MIN_DIM, min(MAX_DIM, final_w))
final_h = max(MIN_DIM, min(MAX_DIM, final_h))
return image_to_resize.resize((final_w, final_h), Image.LANCZOS)
# =========================================================
# UTILITY FUNCTIONS
# =========================================================
def get_num_frames(duration_seconds: float):
return 1 + int(np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL))
# =========================================================
# MAIN GENERATION FUNCTION
# =========================================================
@spaces.GPU(duration=180)
def generate_video(
input_image_path, # Receives file path
prompt,
steps=4,
negative_prompt=default_negative_prompt,
duration_seconds=MAX_DURATION,
guidance_scale=1,
guidance_scale_2=1,
seed=42,
randomize_seed=False,
progress=gr.Progress(track_tqdm=True),
):
# Cleanup memory
gc.collect()
torch.cuda.empty_cache()
try:
# 1. Validation checks
if not input_image_path:
raise gr.Error("Please upload an input image.")
if not os.path.exists(input_image_path):
raise gr.Error("Image file not found! Please re-upload the image.")
# 2. Manual Image Opening
input_image = Image.open(input_image_path).convert("RGB")
num_frames = get_num_frames(duration_seconds)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = resize_image(input_image)
print(f"Generating video with seed: {current_seed}, frames: {num_frames}")
output_frames_list = pipe(
image=resized_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=resized_image.height,
width=resized_image.width,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
# Cleanup
del output_frames_list
del input_image
del resized_image
torch.cuda.empty_cache()
return video_path, current_seed
except Exception as e:
print(f"Error during generation: {e}")
raise gr.Error(f"Generation failed: {str(e)}")
# =========================================================
# GRADIO UI
# =========================================================
# Google Analytics Script
ga_script = """
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1TD40BVM04"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-1TD40BVM04');
</script>
"""
with gr.Blocks(theme=gr.themes.Soft(), head=ga_script) as demo:
# --- OPTIMIZED "NATIVE" YOUTUBE WIDGET (DARK THEME) ---
gr.HTML("""
<div style="background-color: #1f2937; border: 1px solid #374151; border-radius: 12px; overflow: hidden; margin-bottom: 25px; max-width: 900px; margin-left: auto; margin-right: auto; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);">
<div style="display: flex; flex-wrap: wrap;">
<div style="flex: 1 1 320px; position: relative; min-height: 200px;">
<iframe
src="https://www.youtube.com/embed/XIRsOgbqSM0?rel=0&modestbranding=1"
style="position: absolute; top: 0; left: 0; width: 100%; height: 100%; border: none;"
title="Wan 2.2 Pro Tutorial"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen>
</iframe>
</div>
<div style="flex: 1 1 300px; padding: 25px; display: flex; flex-direction: column; justify-content: center; background: linear-gradient(to right, #1f2937, #111827);">
<div style="display: flex; align-items: center; gap: 10px; margin-bottom: 10px;">
<span style="background-color: #374151; color: #fbbf24; padding: 2px 8px; border-radius: 6px; font-size: 12px; font-weight: bold; border: 1px solid #d97706;">PRO TIP 💡</span>
</div>
<h3 style="color: #f3f4f6; margin: 0 0 8px 0; font-size: 18px; line-height: 1.4;">Getting Blurry or Weird Results?</h3>
<p style="color: #9ca3af; margin: 0 0 20px 0; font-size: 14px; line-height: 1.6;">
Don't waste your GPU time. I discovered the exact settings and prompts to get cinematic 4K motion after 100+ tests.
</p>
<a href="https://youtu.be/XIRsOgbqSM0" target="_blank" style="text-decoration: none; width: fit-content;">
<button style="background-color: #ef4444; color: white; border: none; padding: 10px 24px; border-radius: 8px; font-weight: 600; cursor: pointer; display: flex; align-items: center; gap: 8px; transition: background-color 0.2s; font-size: 14px;">
<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><polygon points="5 3 19 12 5 21 5 3"></polygon></svg>
Watch Quick Fix Tutorial
</button>
</a>
</div>
</div>
</div>
""")
# ---------------------------------------------
gr.Markdown("# 🚀 Dream Wan 2.2 Faster Pro (14B) — Ultra Fast I2V with Lightning LoRA")
gr.Markdown("Optimized FP8 quantized pipeline with AoT blocks & 4-step fast inference ⚡")
with gr.Row():
with gr.Column():
input_image_component = gr.Image(type="filepath", label="Input Image")
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
duration_seconds_input = gr.Slider(
minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5,
label="Duration (seconds)",
info=f"Model range: {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale (high noise)")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 (low noise)")
generate_button = gr.Button("🎬 Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True)
ui_inputs = [
input_image_component, prompt_input, steps_slider,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, guidance_scale_2_input,
seed_input, randomize_seed_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
# --- BOTTOM ADVERTISEMENT BANNER (Kept as is but can be updated similarly if needed) ---
gr.HTML("""
<div style="background: linear-gradient(90deg, #4f46e5, #9333ea); color: white; padding: 15px; border-radius: 10px; text-align: center; margin-top: 20px; box-shadow: 0 4px 15px rgba(0,0,0,0.1);">
<div style="display: flex; align-items: center; justify-content: center; gap: 20px; flex-wrap: wrap;">
<div style="text-align: left;">
<h3 style="margin: 0; font-weight: bold; font-size: 18px;">✨ New: Dream Hub Pro (All-in-One)</h3>
<p style="margin: 5px 0 0 0; opacity: 0.9; font-size: 14px;">Access all your pro tools (Wan2.1, Qwen, Audio, Video Enhance) in one place!</p>
</div>
<a href="https://huggingface.co/spaces/dream2589632147/Dream-Hub-Pro" target="_blank" style="text-decoration: none;">
<button style="background-color: white; color: #4f46e5; border: none; padding: 10px 25px; border-radius: 25px; font-weight: bold; cursor: pointer; transition: all 0.2s; font-size: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.2);">
🚀 Open Hub Pro Now
</button>
</a>
</div>
</div>
""")
if __name__ == "__main__":
demo.queue().launch() |