DeepIndex / main.py
chouchouvs's picture
Create main.py
c724d0c verified
raw
history blame
8.61 kB
# -*- coding: utf-8 -*-
from __future__ import annotations
import os, time, uuid, logging
from typing import List, Optional, Dict, Any, Tuple
import requests
import numpy as np
from fastapi import FastAPI, BackgroundTasks, Header, HTTPException
from pydantic import BaseModel, Field
from qdrant_client import QdrantClient
from qdrant_client.http.models import VectorParams, Distance, PointStruct
logging.basicConfig(level=logging.INFO)
LOG = logging.getLogger("remote_indexer")
# ---------- ENV ----------
AUTH_TOKEN = os.getenv("REMOTE_INDEX_TOKEN", "").strip() # simple header auth
HF_TOKEN = os.getenv("HF_API_TOKEN", "").strip()
HF_MODEL = os.getenv("HF_EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
HF_URL = os.getenv("HF_API_URL", "").strip() or f"https://api-inference.huggingface.co/pipeline/feature-extraction/{HF_MODEL}"
QDRANT_URL = os.getenv("QDRANT_URL", "http://localhost:6333")
QDRANT_API = os.getenv("QDRANT_API_KEY", "").strip()
if not HF_TOKEN:
LOG.warning("HF_API_TOKEN manquant — le service refusera /index et /query.")
# ---------- Clients ----------
qdr = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API if QDRANT_API else None)
# ---------- Pydantic ----------
class FileIn(BaseModel):
path: str
text: str
class IndexRequest(BaseModel):
project_id: str = Field(..., min_length=1)
files: List[FileIn]
chunk_size: int = 1200
overlap: int = 200
batch_size: int = 8
store_text: bool = True
class QueryRequest(BaseModel):
project_id: str
query: str
top_k: int = 6
# ---------- Jobs store (en mémoire) ----------
JOBS: Dict[str, Dict[str, Any]] = {} # {job_id: {"status": "...", "logs": [...], "created": ts}}
# ---------- Utils ----------
def _auth(x_auth: Optional[str]):
if AUTH_TOKEN and (x_auth or "") != AUTH_TOKEN:
raise HTTPException(status_code=401, detail="Unauthorized")
def _post_embeddings(batch: List[str]) -> Tuple[np.ndarray, int]:
if not HF_TOKEN:
raise RuntimeError("HF_API_TOKEN manquant (server).")
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
r = requests.post(HF_URL, headers=headers, json=batch, timeout=120)
size = int(r.headers.get("Content-Length", "0"))
r.raise_for_status()
data = r.json()
arr = np.array(data, dtype=np.float32)
# arr: [batch, dim] (sentence-transformers)
# ou [batch, tokens, dim] -> mean pooling
if arr.ndim == 3:
arr = arr.mean(axis=1)
if arr.ndim != 2:
raise RuntimeError(f"Unexpected embeddings shape: {arr.shape}")
# normalisation
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
arr = arr / norms
return arr.astype(np.float32), size
def _ensure_collection(name: str, dim: int):
try:
qdr.get_collection(name)
return
except Exception:
pass
qdr.create_collection(
collection_name=name,
vectors_config=VectorParams(size=dim, distance=Distance.COSINE),
)
def _chunk_with_spans(text: str, size: int, overlap: int):
n = len(text)
if size <= 0:
yield (0, n, text)
return
i = 0
while i < n:
j = min(n, i + size)
yield (i, j, text[i:j])
i = max(0, j - overlap)
if i >= n:
break
def _append_log(job_id: str, line: str):
job = JOBS.get(job_id)
if not job: return
job["logs"].append(line)
def _set_status(job_id: str, status: str):
job = JOBS.get(job_id)
if not job: return
job["status"] = status
# ---------- Background task ----------
def run_index_job(job_id: str, req: IndexRequest):
try:
_set_status(job_id, "running")
total_chunks = 0
LOG.info(f"[{job_id}] Index start project={req.project_id} files={len(req.files)}")
_append_log(job_id, f"Start project={req.project_id} files={len(req.files)}")
# premier batch pour récupérer la dimension
# on prépare un mini lot
warmup = []
for f in req.files[:1]:
warmup.append(next(_chunk_with_spans(f.text, req.chunk_size, req.overlap))[2])
embs, sz = _post_embeddings(warmup)
dim = embs.shape[1]
col = f"proj_{req.project_id}"
_ensure_collection(col, dim)
_append_log(job_id, f"Collection ready: {col} (dim={dim})")
points_buffer: List[PointStruct] = []
point_id = 0
def flush_points():
nonlocal points_buffer
if points_buffer:
qdr.upsert(collection_name=col, points=points_buffer)
points_buffer = []
# boucle fichiers
for fi, f in enumerate(req.files, 1):
chunks, metas = [], []
for ci, (start, end, chunk_txt) in enumerate(_chunk_with_spans(f.text, req.chunk_size, req.overlap)):
chunks.append(chunk_txt)
payload = {"path": f.path, "chunk": ci, "start": start, "end": end}
if req.store_text:
payload["text"] = chunk_txt
metas.append(payload)
if len(chunks) >= req.batch_size:
vecs, sz = _post_embeddings(chunks)
batch_points = []
for k, vec in enumerate(vecs):
batch_points.append(PointStruct(id=point_id, vector=vec.tolist(), payload=metas[k]))
point_id += 1
qdr.upsert(collection_name=col, points=batch_points)
total_chunks += len(chunks)
_append_log(job_id, f"file {fi}/{len(req.files)}: +{len(chunks)} chunks (total={total_chunks}) ~{sz/1024:.1f}KiB")
chunks, metas = [], []
# flush fin de fichier
if chunks:
vecs, sz = _post_embeddings(chunks)
batch_points = []
for k, vec in enumerate(vecs):
batch_points.append(PointStruct(id=point_id, vector=vec.tolist(), payload=metas[k]))
point_id += 1
qdr.upsert(collection_name=col, points=batch_points)
total_chunks += len(chunks)
_append_log(job_id, f"file {fi}/{len(req.files)}: +{len(chunks)} chunks (total={total_chunks}) ~{sz/1024:.1f}KiB")
flush_points()
_append_log(job_id, f"Done. chunks={total_chunks}")
_set_status(job_id, "done")
LOG.info(f"[{job_id}] Index finished. chunks={total_chunks}")
except Exception as e:
LOG.exception("Index job failed")
_append_log(job_id, f"ERROR: {e}")
_set_status(job_id, "error")
# ---------- API ----------
app = FastAPI()
@app.get("/health")
def health():
return {"ok": True}
@app.post("/index")
def start_index(req: IndexRequest, background_tasks: BackgroundTasks, x_auth_token: Optional[str] = Header(default=None)):
_auth(x_auth_token)
if not HF_TOKEN:
raise HTTPException(400, "HF_API_TOKEN manquant côté serveur.")
job_id = uuid.uuid4().hex[:12]
JOBS[job_id] = {"status": "queued", "logs": [], "created": time.time()}
background_tasks.add_task(run_index_job, job_id, req)
return {"job_id": job_id}
@app.get("/status/{job_id}")
def status(job_id: str, x_auth_token: Optional[str] = Header(default=None)):
_auth(x_auth_token)
j = JOBS.get(job_id)
if not j:
raise HTTPException(404, "job inconnu")
return {"status": j["status"], "logs": j["logs"][-800:]}
@app.post("/query")
def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None)):
_auth(x_auth_token)
if not HF_TOKEN:
raise HTTPException(400, "HF_API_TOKEN manquant côté serveur.")
vec, _ = _post_embeddings([req.query])
vec = vec[0].tolist()
col = f"proj_{req.project_id}"
try:
res = qdr.search(collection_name=col, query_vector=vec, limit=int(req.top_k))
except Exception as e:
raise HTTPException(400, f"Search failed: {e}")
out = []
for p in res:
pl = p.payload or {}
txt = pl.get("text")
# hard cap snippet size
if txt and len(txt) > 800:
txt = txt[:800] + "..."
out.append({"path": pl.get("path"), "chunk": pl.get("chunk"), "start": pl.get("start"), "end": pl.get("end"), "text": txt})
return {"results": out}
@app.post("/wipe")
def wipe_collection(project_id: str, x_auth_token: Optional[str] = Header(default=None)):
_auth(x_auth_token)
col = f"proj_{project_id}"
try:
qdr.delete_collection(col)
return {"ok": True}
except Exception as e:
raise HTTPException(400, f"wipe failed: {e}")