#!/bin/bash RUN=3 MEMORY_LENGTH=30 MODEL_TYPE="lstm" Q_NUM_REPEATS_PER_INPUT=10 LOG_DIR="logs/qamnist/run${RUN}/${MODEL_TYPE}_${Q_NUM_REPEATS_PER_INPUT}" SEED=$((RUN - 1)) python -m tasks.qamnist.train \ --log_dir $LOG_DIR \ --seed $SEED \ --memory_length $MEMORY_LENGTH \ --model_type $MODEL_TYPE \ --q_num_images 3 \ --q_num_images_delta 2 \ --q_num_repeats_per_input $Q_NUM_REPEATS_PER_INPUT \ --q_num_operations 3 \ --q_num_operations_delta 2 \ --q_num_answer_steps 10 \ --n_test_batches 20 \ --d_model 875 \ --d_input 64 \ --n_synch_out 32 \ --n_synch_action 32 \ --synapse_depth 1 \ --heads 4 \ --memory_hidden_dims 16 \ --dropout 0.0 \ --deep_memory \ --no-do_normalisation \ --weight_decay 0.0 \ --use_scheduler \ --scheduler_type "cosine" \ --milestones 0 0 0 \ --gamma 0 \ --batch_size 64 \ --batch_size_test 256 \ --lr=0.0001 \ --training_iterations 300001 \ --warmup_steps 500 \ --track_every 1000 \ --save_every 10000 \ --no-reload \ --no-reload_model_only \ --device 0 \ --no-use_amp \ --neuron_select_type "random"