| RUN=3 | |
| MEMORY_LENGTH=30 | |
| MODEL_TYPE="lstm" | |
| Q_NUM_REPEATS_PER_INPUT=10 | |
| LOG_DIR="logs/qamnist/run${RUN}/${MODEL_TYPE}_${Q_NUM_REPEATS_PER_INPUT}" | |
| SEED=$((RUN - 1)) | |
| python -m tasks.qamnist.train \ | |
| --log_dir $LOG_DIR \ | |
| --seed $SEED \ | |
| --memory_length $MEMORY_LENGTH \ | |
| --model_type $MODEL_TYPE \ | |
| --q_num_images 3 \ | |
| --q_num_images_delta 2 \ | |
| --q_num_repeats_per_input $Q_NUM_REPEATS_PER_INPUT \ | |
| --q_num_operations 3 \ | |
| --q_num_operations_delta 2 \ | |
| --q_num_answer_steps 10 \ | |
| --n_test_batches 20 \ | |
| --d_model 875 \ | |
| --d_input 64 \ | |
| --n_synch_out 32 \ | |
| --n_synch_action 32 \ | |
| --synapse_depth 1 \ | |
| --heads 4 \ | |
| --memory_hidden_dims 16 \ | |
| --dropout 0.0 \ | |
| --deep_memory \ | |
| --no-do_normalisation \ | |
| --weight_decay 0.0 \ | |
| --use_scheduler \ | |
| --scheduler_type "cosine" \ | |
| --milestones 0 0 0 \ | |
| --gamma 0 \ | |
| --batch_size 64 \ | |
| --batch_size_test 256 \ | |
| --lr=0.0001 \ | |
| --training_iterations 300001 \ | |
| --warmup_steps 500 \ | |
| --track_every 1000 \ | |
| --save_every 10000 \ | |
| --no-reload \ | |
| --no-reload_model_only \ | |
| --device 0 \ | |
| --no-use_amp \ | |
| --neuron_select_type "random" |