| python -m tasks.image_classification.train \ | |
| --log_dir logs/cifar10-versus-humans/ctm/d=256--i=64--heads=16--sd=5--synch=256-512-0-h=64-random-pairing--iters=50x15--backbone=18-1--seed=1 \ | |
| --model ctm | |
| --dataset cifar10 \ | |
| --d_model 256 \ | |
| --d_input 64 \ | |
| --synapse_depth 5 \ | |
| --heads 16 \ | |
| --n_synch_out 256 \ | |
| --n_synch_action 512 \ | |
| --n_random_pairing_self 0 \ | |
| --neuron_select_type random-pairing \ | |
| --iterations 50 \ | |
| --memory_length 15 \ | |
| --deep_memory \ | |
| --memory_hidden_dims 64 \ | |
| --dropout 0.0 \ | |
| --dropout_nlm 0 \ | |
| --no-do_normalisation \ | |
| --positional_embedding_type none \ | |
| --backbone_type resnet18-1 \ | |
| --training_iterations 600001 \ | |
| --warmup_steps 1000 \ | |
| --use_scheduler \ | |
| --scheduler_type cosine \ | |
| --weight_decay 0.0001 \ | |
| --save_every 1000 \ | |
| --track_every 2000 \ | |
| --n_test_batches 50 \ | |
| --num_workers_train 8 \ | |
| --batch_size 512 \ | |
| --batch_size_test 512 \ | |
| --lr 1e-4 \ | |
| --device 0 \ | |
| --seed 1 | |
| python -m tasks.image_classification.train \ | |
| --log_dir logs/cifar10-versus-humans/ctm/d=256--i=64--heads=16--sd=5--synch=256-512-0-h=64-random-pairing--iters=50x15--backbone=18-1--seed=2 \ | |
| --model ctm | |
| --dataset cifar10 \ | |
| --d_model 256 \ | |
| --d_input 64 \ | |
| --synapse_depth 5 \ | |
| --heads 16 \ | |
| --n_synch_out 256 \ | |
| --n_synch_action 512 \ | |
| --n_random_pairing_self 0 \ | |
| --neuron_select_type random-pairing \ | |
| --iterations 50 \ | |
| --memory_length 15 \ | |
| --deep_memory \ | |
| --memory_hidden_dims 64 \ | |
| --dropout 0.0 \ | |
| --dropout_nlm 0 \ | |
| --no-do_normalisation \ | |
| --positional_embedding_type none \ | |
| --backbone_type resnet18-1 \ | |
| --training_iterations 600001 \ | |
| --warmup_steps 1000 \ | |
| --use_scheduler \ | |
| --scheduler_type cosine \ | |
| --weight_decay 0.0001 \ | |
| --save_every 1000 \ | |
| --track_every 2000 \ | |
| --n_test_batches 50 \ | |
| --num_workers_train 8 \ | |
| --batch_size 512 \ | |
| --batch_size_test 512 \ | |
| --lr 1e-4 \ | |
| --device 0 \ | |
| --seed 2 | |
| python -m tasks.image_classification.train \ | |
| --log_dir logs/cifar10-versus-humans/ctm/d=256--i=64--heads=16--sd=5--synch=256-512-0-h=64-random-pairing--iters=50x15--backbone=18-1--seed=42 \ | |
| --model ctm | |
| --dataset cifar10 \ | |
| --d_model 256 \ | |
| --d_input 64 \ | |
| --synapse_depth 5 \ | |
| --heads 16 \ | |
| --n_synch_out 256 \ | |
| --n_synch_action 512 \ | |
| --n_random_pairing_self 0 \ | |
| --neuron_select_type random-pairing \ | |
| --iterations 50 \ | |
| --memory_length 15 \ | |
| --deep_memory \ | |
| --memory_hidden_dims 64 \ | |
| --dropout 0.0 \ | |
| --dropout_nlm 0 \ | |
| --no-do_normalisation \ | |
| --positional_embedding_type none \ | |
| --backbone_type resnet18-1 \ | |
| --training_iterations 600001 \ | |
| --warmup_steps 1000 \ | |
| --use_scheduler \ | |
| --scheduler_type cosine \ | |
| --weight_decay 0.0001 \ | |
| --save_every 1000 \ | |
| --track_every 2000 \ | |
| --n_test_batches 50 \ | |
| --num_workers_train 8 \ | |
| --batch_size 512 \ | |
| --batch_size_test 512 \ | |
| --lr 1e-4 \ | |
| --device 0 \ | |
| --seed 42 | |
| python -m tasks.image_classification.train \ | |
| --log_dir logs/cifar10-versus-humans/lstm/nlayers=2--d=256--i=64--heads=16--synch=256-512-0-h=64-random-pairing--iters=50x15--backbone=18-1--seed=1 \ | |
| --dataset cifar10 \ | |
| --model lstm \ | |
| --num_layers 2 \ | |
| --d_model 256 \ | |
| --d_input 64 \ | |
| --heads 16 \ | |
| --iterations 50 \ | |
| --dropout 0.0 \ | |
| --positional_embedding_type none \ | |
| --backbone_type resnet18-1 \ | |
| --training_iterations 600001 \ | |
| --warmup_steps 2000 \ | |
| --use_scheduler \ | |
| --scheduler_type cosine \ | |
| --weight_decay 0.0001 \ | |
| --save_every 1000 \ | |
| --track_every 2000 \ | |
| --n_test_batches 50 \ | |
| --reload \ | |
| --num_workers_train 8 \ | |
| --batch_size 512 \ | |
| --batch_size_test 512 \ | |
| --lr 1e-4 \ | |
| --device 0 \ | |
| --seed 1 \ | |
| --no-reload | |
| python -m tasks.image_classification.train \ | |
| --log_dir logs/cifar10-versus-humans/lstm/nlayers=2--d=256--i=64--heads=16--synch=256-512-0-h=64-random-pairing--iters=50x15--backbone=18-1--seed=2 \ | |
| --dataset cifar10 \ | |
| --model lstm \ | |
| --num_layers 2 \ | |
| --d_model 256 \ | |
| --d_input 64 \ | |
| --heads 16 \ | |
| --iterations 50 \ | |
| --dropout 0.0 \ | |
| --positional_embedding_type none \ | |
| --backbone_type resnet18-1 \ | |
| --training_iterations 600001 \ | |
| --warmup_steps 2000 \ | |
| --use_scheduler \ | |
| --scheduler_type cosine \ | |
| --weight_decay 0.0001 \ | |
| --save_every 1000 \ | |
| --track_every 2000 \ | |
| --n_test_batches 50 \ | |
| --reload \ | |
| --num_workers_train 8 \ | |
| --batch_size 512 \ | |
| --batch_size_test 512 \ | |
| --lr 1e-4 \ | |
| --device 0 \ | |
| --seed 2 \ | |
| --no-reload | |
| python -m tasks.image_classification.train \ | |
| --log_dir logs/cifar10-versus-humans/lstm/nlayers=2--d=256--i=64--heads=16--synch=256-512-0-h=64-random-pairing--iters=50x15--backbone=18-1--seed=42 \ | |
| --dataset cifar10 \ | |
| --model lstm \ | |
| --num_layers 2 \ | |
| --d_model 256 \ | |
| --d_input 64 \ | |
| --heads 16 \ | |
| --iterations 50 \ | |
| --dropout 0.0 \ | |
| --positional_embedding_type none \ | |
| --backbone_type resnet18-1 \ | |
| --training_iterations 600001 \ | |
| --warmup_steps 2000 \ | |
| --use_scheduler \ | |
| --scheduler_type cosine \ | |
| --weight_decay 0.0001 \ | |
| --save_every 1000 \ | |
| --track_every 2000 \ | |
| --n_test_batches 50 \ | |
| --reload \ | |
| --num_workers_train 8 \ | |
| --batch_size 512 \ | |
| --batch_size_test 512 \ | |
| --lr 1e-4 \ | |
| --device 0 \ | |
| --seed 42 \ | |
| --no-reload | |
| python -m tasks.image_classification.train \ | |
| --log_dir logs/cifar10-versus-humans/ff/d=256--backbone=18-1--seed=1 \ | |
| --dataset cifar10 \ | |
| --model ff \ | |
| --d_model 256 \ | |
| --memory_hidden_dims 64 \ | |
| --dropout 0.0 \ | |
| --dropout_nlm 0 \ | |
| --backbone_type resnet18-1 \ | |
| --training_iterations 600001 \ | |
| --warmup_steps 1000 \ | |
| --use_scheduler \ | |
| --scheduler_type cosine \ | |
| --weight_decay 0.0001 \ | |
| --save_every 1000 \ | |
| --track_every 2000 \ | |
| --n_test_batches 50 \ | |
| --num_workers_train 8 \ | |
| --batch_size 512 \ | |
| --batch_size_test 512 \ | |
| --lr 1e-4 \ | |
| --device 0 \ | |
| --seed 1 | |
| python -m tasks.image_classification.train \ | |
| --log_dir logs/cifar10-versus-humans/ff/d=256--backbone=18-1--seed=2 \ | |
| --dataset cifar10 \ | |
| --model ff \ | |
| --d_model 256 \ | |
| --memory_hidden_dims 64 \ | |
| --dropout 0.0 \ | |
| --dropout_nlm 0 \ | |
| --backbone_type resnet18-1 \ | |
| --training_iterations 600001 \ | |
| --warmup_steps 1000 \ | |
| --use_scheduler \ | |
| --scheduler_type cosine \ | |
| --weight_decay 0.0001 \ | |
| --save_every 1000 \ | |
| --track_every 2000 \ | |
| --n_test_batches 50 \ | |
| --num_workers_train 8 \ | |
| --batch_size 512 \ | |
| --batch_size_test 512 \ | |
| --lr 1e-4 \ | |
| --device 0 \ | |
| --seed 2 | |
| python -m tasks.image_classification.train \ | |
| --log_dir logs/cifar10-versus-humans/ff/d=256--backbone=18-1--seed=42 \ | |
| --dataset cifar10 \ | |
| --model ff \ | |
| --d_model 256 \ | |
| --memory_hidden_dims 64 \ | |
| --dropout 0.0 \ | |
| --dropout_nlm 0 \ | |
| --backbone_type resnet18-1 \ | |
| --training_iterations 600001 \ | |
| --warmup_steps 1000 \ | |
| --use_scheduler \ | |
| --scheduler_type cosine \ | |
| --weight_decay 0.0001 \ | |
| --save_every 1000 \ | |
| --track_every 2000 \ | |
| --n_test_batches 50 \ | |
| --num_workers_train 8 \ | |
| --batch_size 512 \ | |
| --batch_size_test 512 \ | |
| --lr 1e-4 \ | |
| --device 0 \ | |
| --seed 42 | |