File size: 23,654 Bytes
68b32f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8dc0c3
 
 
 
 
 
 
 
68b32f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import argparse
import os
import random

import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
sns.set_style('darkgrid')
import torch
if torch.cuda.is_available():
    # For faster
    torch.set_float32_matmul_precision('high')   
from tqdm.auto import tqdm

from data.custom_datasets import SortDataset
from models.ctm_sort import ContinuousThoughtMachineSORT
from tasks.image_classification.plotting import plot_neural_dynamics, make_classification_gif
from utils.housekeeping import set_seed, zip_python_code
from utils.losses import sort_loss
from tasks.sort.utils import compute_ctc_accuracy, decode_predictions
from utils.schedulers import WarmupCosineAnnealingLR, WarmupMultiStepLR, warmup

import torchvision
torchvision.disable_beta_transforms_warning()

from autoclip.torch import QuantileClip

import warnings
warnings.filterwarnings("ignore", message="using precomputed metric; inverse_transform will be unavailable")


warnings.filterwarnings(
    "ignore",
    "Corrupt EXIF data",
    UserWarning,
    r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)

warnings.filterwarnings(
    "ignore",
    "UserWarning: Metadata Warning",
    UserWarning,
    r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)


warnings.filterwarnings(
    "ignore",
    "UserWarning: Truncated File Read",
    UserWarning,
    r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)


def parse_args():
    parser = argparse.ArgumentParser()

    # Model Architecture
    parser.add_argument('--d_model', type=int, default=512, help='Dimension of the model.')
    parser.add_argument('--d_input', type=int, default=128, help='Dimension of the input.')
    parser.add_argument('--synapse_depth', type=int, default=4, help='Depth of U-NET model for synapse. 1=linear, no unet.')
    parser.add_argument('--heads', type=int, default=4, help='Number of attention heads.')
    parser.add_argument('--n_synch_out', type=int, default=32, help='Number of neurons to use for output synch.')
    parser.add_argument('--n_synch_action', type=int, default=32, help='Number of neurons to use for observation/action synch.')
    parser.add_argument('--neuron_select_type', type=str, default='random-pairing', help='Protocol for selecting neuron subset.')
    parser.add_argument('--n_random_pairing_self', type=int, default=0, help='Number of neurons paired self-to-self for synch.')
    
    parser.add_argument('--iterations', type=int, default=50, help='Number of internal ticks.')
    parser.add_argument('--memory_length', type=int, default=25, help='Length of the pre-activation history for NLMS.')
    parser.add_argument('--deep_memory', action=argparse.BooleanOptionalAction, default=True,
                        help='Use deep memory.')
    parser.add_argument('--memory_hidden_dims', type=int, default=4, help='Hidden dimensions of the memory if using deep memory.')
    parser.add_argument('--dropout', type=float, default=0.0, help='Dropout rate.')
    parser.add_argument('--dropout_nlm', type=float, default=None, help='Dropout rate for NLMs specifically. Unset to match dropout on the rest of the model.')
    parser.add_argument('--do_normalisation', action=argparse.BooleanOptionalAction, default=False,
                        help='Apply normalization in NLMs.')
    parser.add_argument('--positional_embedding_type', type=str, default='none',
                        help='Type of positional embedding.', choices=['none', 
                                                                       'learnable-fourier', 
                                                                       'multi-learnable-fourier',
                                                                       'custom-rotational'])

    # Training
    parser.add_argument('--batch_size', type=int, default=32, help='Batch size for training.')
    parser.add_argument('--batch_size_test', type=int, default=32, help='Batch size for testing.')
    parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate for the model.')
    parser.add_argument('--training_iterations', type=int, default=100001, help='Number of training iterations.')
    parser.add_argument('--warmup_steps', type=int, default=5000, help='Number of warmup steps.')
    parser.add_argument('--use_scheduler', action=argparse.BooleanOptionalAction, default=True,
                        help='Use a learning rate scheduler.')
    parser.add_argument('--scheduler_type', type=str, default='cosine', choices=['multistep', 'cosine'],
                        help='Type of learning rate scheduler.')
    parser.add_argument('--milestones', type=int, default=[8000, 15000, 20000], nargs='+',
                        help='Learning rate scheduler milestones.')
    parser.add_argument('--gamma', type=float, default=0.1, help='Learning rate scheduler gamma for multistep.')
    parser.add_argument('--weight_decay', type=float, default=0.0, help='Weight decay factor.')
    parser.add_argument('--weight_decay_exclusion_list', type=str, nargs='+', default=[], help='List to exclude from weight decay. Typically good: bn, ln, bias, start')
    parser.add_argument('--gradient_clipping', type=float, default=-1, help='Gradient quantile clipping value (-1 to disable).')
    parser.add_argument('--use_amp', action=argparse.BooleanOptionalAction, default=False, help='AMP autocast.')
    parser.add_argument('--do_compile', action=argparse.BooleanOptionalAction, default=False, help='Try to compile the synapses, backbone, and nlms.')


    # Logging and Saving
    parser.add_argument('--log_dir', type=str, default='logs/scratch',
                        help='Directory for logging.')
    parser.add_argument('--N_to_sort', type=int, default=30, help='N numbers to sort.')
    parser.add_argument('--save_every', type=int, default=1000, help='Save checkpoints every this many iterations.')
    parser.add_argument('--seed', type=int, default=412, help='Random seed.')
    parser.add_argument('--reload', action=argparse.BooleanOptionalAction, default=False, help='Reload from disk?')
    parser.add_argument('--reload_model_only', action=argparse.BooleanOptionalAction, default=False,
                        help='Reload only the model from disk?')

    # Tracking
    parser.add_argument('--track_every', type=int, default=1000, help='Track metrics every this many iterations.')
    parser.add_argument('--n_test_batches', type=int, default=2, help='How many minibatches to approx metrics. Set to -1 for full eval')

    # Device
    parser.add_argument('--device', type=int, nargs='+', default=[-1],
                        help='List of GPU(s) to use. Set to -1 to use CPU.')

    args = parser.parse_args()
    return args




if __name__=='__main__':

    # Hosuekeeping
    args = parse_args()
    # Change the following for sorting
    args.backbone_type = 'none'
    
    set_seed(args.seed, False)
    if not os.path.exists(args.log_dir): os.makedirs(args.log_dir)
    
    

    

    # Data
    train_data = SortDataset(args.N_to_sort)
    test_data = SortDataset(args.N_to_sort)
    trainloader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=1)
    testloader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=1, drop_last=False)
    

    prediction_reshaper = [-1]  # Problem specific
    args.out_dims = args.N_to_sort + 1

    # For total reproducibility
    # Python 3.x
    zip_python_code(f'{args.log_dir}/repo_state.zip')
    with open(f'{args.log_dir}/args.txt', 'w') as f:
        print(args, file=f)  

    # Configure device string (support MPS on macOS)
    if args.device[0] != -1:
        device = f'cuda:{args.device[0]}'
    elif torch.backends.mps.is_available():
        device = 'mps'
    else:
        device = 'cpu'
    print(f'Running model {args.model} on {device}')

    # Build model
    model = ContinuousThoughtMachineSORT(
        iterations=args.iterations,
        d_model=args.d_model,
        d_input=args.out_dims-1,  
        heads=args.heads,
        n_synch_out=args.n_synch_out,
        n_synch_action=args.n_synch_action,
        synapse_depth=args.synapse_depth,
        memory_length=args.memory_length,  
        deep_nlms=args.deep_memory,
        memory_hidden_dims=args.memory_hidden_dims,  
        do_layernorm_nlm=args.do_normalisation,  
        backbone_type='none',
        positional_embedding_type=args.positional_embedding_type,
        out_dims=args.out_dims,
        prediction_reshaper=prediction_reshaper,
        dropout=args.dropout,      
        dropout_nlm=args.dropout_nlm,    
        neuron_select_type=args.neuron_select_type,
        n_random_pairing_self=args.n_random_pairing_self,
    ).to(device)

    
    model.train()

    # For lazy modules so that we can get param count
    pseudo_inputs = train_data.__getitem__(0)[0].unsqueeze(0).to(device)
    model(pseudo_inputs)  

    print(f'Total params: {sum(p.numel() for p in model.parameters())}')
    
    

    # Optimizer and scheduler
    decay_params = []
    no_decay_params = []
    no_decay_names = []
    for name, param in model.named_parameters():
        if not param.requires_grad:
            continue # Skip parameters that don't require gradients
        if any(exclusion_str in name for exclusion_str in args.weight_decay_exclusion_list):
            no_decay_params.append(param)
            no_decay_names.append(name)
        else:
            decay_params.append(param)
    if len(no_decay_names):
        print(f'WARNING, excluding: {no_decay_names}')

    # Optimizer and scheduler (Common setup)
    if len(no_decay_names) and args.weight_decay!=0:
        optimizer = torch.optim.AdamW([{'params': decay_params, 'weight_decay':args.weight_decay},
                                       {'params': no_decay_params, 'weight_decay':0}],
                                  lr=args.lr,
                                  eps=1e-8 if not args.use_amp else 1e-6)
    else:
        optimizer = torch.optim.AdamW(model.parameters(),
                                    lr=args.lr,
                                    eps=1e-8 if not args.use_amp else 1e-6,
                                    weight_decay=args.weight_decay)
    
    warmup_schedule = warmup(args.warmup_steps)
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warmup_schedule.step)
    if args.use_scheduler:
        if args.scheduler_type == 'multistep':
            scheduler = WarmupMultiStepLR(optimizer, warmup_steps=args.warmup_steps, milestones=args.milestones, gamma=args.gamma)
        elif args.scheduler_type == 'cosine':
            scheduler = WarmupCosineAnnealingLR(optimizer, args.warmup_steps, args.training_iterations, warmup_start_lr=1e-20, eta_min=1e-7)
        else:
            raise NotImplementedError
        
   
    
    # Metrics tracking (I like custom)
    # Using batched estimates
    start_iter = 0  # For reloading, keep track of this (pretty tqdm stuff needs it)
    train_losses = []  
    test_losses = []
    train_accuracies = []  # This will be per internal tick, not so simple
    test_accuracies = []
    train_accuracies_full_list = []  # This will be selected according to what is returned by loss function
    test_accuracies_full_list = []
    iters = []

    # Now that everything is initliased, reload if desired
    scaler = torch.amp.GradScaler("cuda" if "cuda" in device else "cpu", enabled=args.use_amp)
    if args.reload:
        if os.path.isfile(f'{args.log_dir}/checkpoint.pt'):
            print(f'Reloading from: {args.log_dir}/checkpoint.pt')
            checkpoint = torch.load(f'{args.log_dir}/checkpoint.pt', map_location=device, weights_only=False)
            model.load_state_dict(checkpoint['model_state_dict'], strict=True)
            if not args.reload_model_only:
                print('Reloading optimizer etc.')
                optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
                scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
                scaler.load_state_dict(checkpoint['scaler_state_dict'])
                start_iter = checkpoint['iteration']
                train_losses = checkpoint['train_losses']
                train_accuracies_full_list = checkpoint['train_accuracies_full_list']
                train_accuracies = checkpoint['train_accuracies']
                test_losses = checkpoint['test_losses']
                test_accuracies_full_list = checkpoint['test_accuracies_full_list']
                test_accuracies = checkpoint['test_accuracies']
                iters = checkpoint['iters']
            else:
                print('Only relading model!')
            if 'torch_rng_state' in checkpoint:
                # Reset seeds, otherwise mid-way training can be obscure (particularly for imagenet)
                torch.set_rng_state(checkpoint['torch_rng_state'].cpu().byte())
                np.random.set_state(checkpoint['numpy_rng_state'])
                random.setstate(checkpoint['random_rng_state'])

            del checkpoint
            import gc
            gc.collect()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
    
    if args.do_compile:
        print('Compiling...')
        model.synapses = torch.compile(model.synapses, mode='reduce-overhead', fullgraph=True)
        model.backbone = torch.compile(model.backbone, mode='reduce-overhead', fullgraph=True)
    
    # Training
    iterator = iter(trainloader)  # Not training in epochs, but rather iterations. Need to reset this from time to time
    with tqdm(total=args.training_iterations, initial=start_iter, leave=False, position=0, dynamic_ncols=True) as pbar:
        for bi in range(start_iter, args.training_iterations):
            current_lr = optimizer.param_groups[-1]['lr']

            
            
            try:
                inputs, targets = next(iterator)
            except StopIteration:
                iterator = iter(trainloader)
                inputs, targets = next(iterator)

            inputs = inputs.to(device)
            targets = targets.to(device)
            with torch.autocast(device_type="cuda" if "cuda" in device else "cpu", dtype=torch.float16, enabled=args.use_amp):
                if args.do_compile:
                    torch.compiler.cudagraph_mark_step_begin()
                predictions, certainties, synchronisation = model(inputs)
                loss = sort_loss(predictions, targets)
            
                        
            scaler.scale(loss).backward()
        

            if args.gradient_clipping!=-1:
                scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=args.gradient_clipping)
            

            scaler.step(optimizer)
            scaler.update()
            optimizer.zero_grad(set_to_none=True)
            scheduler.step()

            accuracy = compute_ctc_accuracy(predictions, targets, predictions.shape[1]-1)
            pbar.set_description(f'Sorting {args.N_to_sort} real numbers. Loss={loss.item():0.3f}. Accuracy={accuracy:0.3f}. LR={current_lr:0.6f}')


            # Metrics tracking and plotting
            if bi%args.track_every==0:# and bi != 0:
                model.eval()
                with torch.inference_mode():
                    

                    inputs, targets = next(iter(testloader))
                    inputs = inputs.to(device)
                    targets = targets.to(device)
                    pbar.set_description('Tracking: Processing test data')
                    predictions, certainties, synchronisation, pre_activations, post_activations, _ = model(inputs, track=True)
                    pbar.set_description('Tracking: Neural dynamics')
                    plot_neural_dynamics(post_activations, 100, args.log_dir)

                    imgi = 0


                    
                    ##################################### TRAIN METRICS
                    all_predictions = []
                    all_targets = []
                    all_losses = []
                    
                    iters.append(bi)
                    pbar.set_description('Tracking: Computing loss and accuracy for curves')
                    with torch.inference_mode():
                        loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size_test, shuffle=True, num_workers=1)
                        with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
                        
                            for inferi, (inputs, targets) in enumerate(loader):
                                
                                inputs = inputs.to(device)
                                targets = targets.to(device)
                                these_predictions, certainties, synchronisation = model(inputs)

                                loss = sort_loss(these_predictions, targets)
                                all_losses.append(loss.item())

                                all_targets.append(targets.detach().cpu().numpy())

                                decoded = [d[:targets.shape[1]] for d in decode_predictions(these_predictions, predictions.shape[1]-1)]
                                decoded = torch.stack([torch.concatenate((d, torch.zeros(targets.shape[1] - len(d), device=targets.device)+targets.shape[1])) if len(d) < targets.shape[1] else d for d in decoded], 0)

                                all_predictions.append(decoded.detach().cpu().numpy())
                                
                                if args.n_test_batches!=-1 and inferi%args.n_test_batches==0 and inferi!=0 : break
                                pbar_inner.set_description('Computing metrics for train')
                                pbar_inner.update(1)

                        all_predictions = np.concatenate(all_predictions)
                        all_targets = np.concatenate(all_targets)


                        train_accuracies.append((all_predictions==all_targets).mean())
                        train_accuracies_full_list.append((all_predictions==all_targets).all(-1).mean())
                        train_losses.append(np.mean(all_losses))

                        ##################################### TEST METRICS
                        all_predictions = []
                        all_targets = []
                        all_losses = []
                        loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=1)
                        with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
                            for inferi, (inputs, targets) in enumerate(loader):
                                
                                inputs = inputs.to(device)
                                targets = targets.to(device)
                                these_predictions, certainties, synchronisation = model(inputs)

                                loss = sort_loss(these_predictions, targets)
                                all_losses.append(loss.item())

                                all_targets.append(targets.detach().cpu().numpy())

                                decoded = [d[:targets.shape[1]] for d in decode_predictions(these_predictions, predictions.shape[1]-1)]
                                decoded = torch.stack([torch.concatenate((d, torch.zeros(targets.shape[1] - len(d), device=targets.device)+targets.shape[1])) if len(d) < targets.shape[1] else d for d in decoded], 0)

                                all_predictions.append(decoded.detach().cpu().numpy())
                                
                                if args.n_test_batches!=-1 and inferi%args.n_test_batches==0 and inferi!=0 : break
                                pbar_inner.set_description('Computing metrics for train')
                                pbar_inner.update(1)

                        all_predictions = np.concatenate(all_predictions)
                        all_targets = np.concatenate(all_targets)


                        test_accuracies.append((all_predictions==all_targets).mean())
                        test_accuracies_full_list.append((all_predictions==all_targets).all(-1).mean())
                        test_losses.append(np.mean(all_losses))
                            

                        figacc = plt.figure(figsize=(10, 10))
                        axacc_train = figacc.add_subplot(211)
                        axacc_test = figacc.add_subplot(212)
                        cm = sns.color_palette("viridis", as_cmap=True)
                        axacc_train.plot(iters, train_accuracies, 'b-', alpha=0.7, label='Find grained')   
                        axacc_train.plot(iters, train_accuracies_full_list, 'k--', alpha=0.7, label='Full list')   
                        axacc_test.plot(iters, test_accuracies, 'b-', alpha=0.7, label='Fine grained')        
                        axacc_test.plot(iters, test_accuracies_full_list, 'k--', alpha=0.7, label='Full list')        
                        axacc_train.set_title('Train')
                        axacc_test.set_title('Test')
                        axacc_train.legend(loc='lower right')
                        axacc_train.set_xlim([0, args.training_iterations])
                        axacc_test.set_xlim([0, args.training_iterations])
                        
                        figacc.tight_layout()
                        figacc.savefig(f'{args.log_dir}/accuracies.png', dpi=150)
                        plt.close(figacc)

                        figloss = plt.figure(figsize=(10, 5))
                        axloss = figloss.add_subplot(111)
                        axloss.plot(iters, train_losses, 'b-', linewidth=1, alpha=0.8, label=f'Train: {train_losses[-1]}')
                        axloss.plot(iters, test_losses, 'r-', linewidth=1, alpha=0.8, label=f'Test: {test_losses[-1]}')
                        axloss.legend(loc='upper right')

                        axloss.set_xlim([0, args.training_iterations])
                        figloss.tight_layout()
                        figloss.savefig(f'{args.log_dir}/losses.png', dpi=150)
                        plt.close(figloss)

                model.train()
                            



            # Save model
            if (bi%args.save_every==0 or bi==args.training_iterations-1) and bi != start_iter:
                torch.save(
                    {
                    'model_state_dict':model.state_dict(),
                    'optimizer_state_dict':optimizer.state_dict(),
                    'scheduler_state_dict':scheduler.state_dict(),
                    'scaler_state_dict':scaler.state_dict(),
                    'iteration':bi,
                    'train_accuracies_full_list':train_accuracies_full_list,
                    'train_accuracies':train_accuracies,
                    'test_accuracies_full_list':test_accuracies_full_list,
                    'test_accuracies':test_accuracies,
                    'train_losses':train_losses,
                    'test_losses':test_losses,
                    'iters':iters,
                    'args':args,
                    'torch_rng_state': torch.get_rng_state(),
                    'numpy_rng_state': np.random.get_state(),
                    'random_rng_state': random.getstate(),
                    } , f'{args.log_dir}/checkpoint.pt')
            
            pbar.update(1)