File size: 23,654 Bytes
68b32f4 e8dc0c3 68b32f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
import argparse
import os
import random
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
sns.set_style('darkgrid')
import torch
if torch.cuda.is_available():
# For faster
torch.set_float32_matmul_precision('high')
from tqdm.auto import tqdm
from data.custom_datasets import SortDataset
from models.ctm_sort import ContinuousThoughtMachineSORT
from tasks.image_classification.plotting import plot_neural_dynamics, make_classification_gif
from utils.housekeeping import set_seed, zip_python_code
from utils.losses import sort_loss
from tasks.sort.utils import compute_ctc_accuracy, decode_predictions
from utils.schedulers import WarmupCosineAnnealingLR, WarmupMultiStepLR, warmup
import torchvision
torchvision.disable_beta_transforms_warning()
from autoclip.torch import QuantileClip
import warnings
warnings.filterwarnings("ignore", message="using precomputed metric; inverse_transform will be unavailable")
warnings.filterwarnings(
"ignore",
"Corrupt EXIF data",
UserWarning,
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
warnings.filterwarnings(
"ignore",
"UserWarning: Metadata Warning",
UserWarning,
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
warnings.filterwarnings(
"ignore",
"UserWarning: Truncated File Read",
UserWarning,
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
def parse_args():
parser = argparse.ArgumentParser()
# Model Architecture
parser.add_argument('--d_model', type=int, default=512, help='Dimension of the model.')
parser.add_argument('--d_input', type=int, default=128, help='Dimension of the input.')
parser.add_argument('--synapse_depth', type=int, default=4, help='Depth of U-NET model for synapse. 1=linear, no unet.')
parser.add_argument('--heads', type=int, default=4, help='Number of attention heads.')
parser.add_argument('--n_synch_out', type=int, default=32, help='Number of neurons to use for output synch.')
parser.add_argument('--n_synch_action', type=int, default=32, help='Number of neurons to use for observation/action synch.')
parser.add_argument('--neuron_select_type', type=str, default='random-pairing', help='Protocol for selecting neuron subset.')
parser.add_argument('--n_random_pairing_self', type=int, default=0, help='Number of neurons paired self-to-self for synch.')
parser.add_argument('--iterations', type=int, default=50, help='Number of internal ticks.')
parser.add_argument('--memory_length', type=int, default=25, help='Length of the pre-activation history for NLMS.')
parser.add_argument('--deep_memory', action=argparse.BooleanOptionalAction, default=True,
help='Use deep memory.')
parser.add_argument('--memory_hidden_dims', type=int, default=4, help='Hidden dimensions of the memory if using deep memory.')
parser.add_argument('--dropout', type=float, default=0.0, help='Dropout rate.')
parser.add_argument('--dropout_nlm', type=float, default=None, help='Dropout rate for NLMs specifically. Unset to match dropout on the rest of the model.')
parser.add_argument('--do_normalisation', action=argparse.BooleanOptionalAction, default=False,
help='Apply normalization in NLMs.')
parser.add_argument('--positional_embedding_type', type=str, default='none',
help='Type of positional embedding.', choices=['none',
'learnable-fourier',
'multi-learnable-fourier',
'custom-rotational'])
# Training
parser.add_argument('--batch_size', type=int, default=32, help='Batch size for training.')
parser.add_argument('--batch_size_test', type=int, default=32, help='Batch size for testing.')
parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate for the model.')
parser.add_argument('--training_iterations', type=int, default=100001, help='Number of training iterations.')
parser.add_argument('--warmup_steps', type=int, default=5000, help='Number of warmup steps.')
parser.add_argument('--use_scheduler', action=argparse.BooleanOptionalAction, default=True,
help='Use a learning rate scheduler.')
parser.add_argument('--scheduler_type', type=str, default='cosine', choices=['multistep', 'cosine'],
help='Type of learning rate scheduler.')
parser.add_argument('--milestones', type=int, default=[8000, 15000, 20000], nargs='+',
help='Learning rate scheduler milestones.')
parser.add_argument('--gamma', type=float, default=0.1, help='Learning rate scheduler gamma for multistep.')
parser.add_argument('--weight_decay', type=float, default=0.0, help='Weight decay factor.')
parser.add_argument('--weight_decay_exclusion_list', type=str, nargs='+', default=[], help='List to exclude from weight decay. Typically good: bn, ln, bias, start')
parser.add_argument('--gradient_clipping', type=float, default=-1, help='Gradient quantile clipping value (-1 to disable).')
parser.add_argument('--use_amp', action=argparse.BooleanOptionalAction, default=False, help='AMP autocast.')
parser.add_argument('--do_compile', action=argparse.BooleanOptionalAction, default=False, help='Try to compile the synapses, backbone, and nlms.')
# Logging and Saving
parser.add_argument('--log_dir', type=str, default='logs/scratch',
help='Directory for logging.')
parser.add_argument('--N_to_sort', type=int, default=30, help='N numbers to sort.')
parser.add_argument('--save_every', type=int, default=1000, help='Save checkpoints every this many iterations.')
parser.add_argument('--seed', type=int, default=412, help='Random seed.')
parser.add_argument('--reload', action=argparse.BooleanOptionalAction, default=False, help='Reload from disk?')
parser.add_argument('--reload_model_only', action=argparse.BooleanOptionalAction, default=False,
help='Reload only the model from disk?')
# Tracking
parser.add_argument('--track_every', type=int, default=1000, help='Track metrics every this many iterations.')
parser.add_argument('--n_test_batches', type=int, default=2, help='How many minibatches to approx metrics. Set to -1 for full eval')
# Device
parser.add_argument('--device', type=int, nargs='+', default=[-1],
help='List of GPU(s) to use. Set to -1 to use CPU.')
args = parser.parse_args()
return args
if __name__=='__main__':
# Hosuekeeping
args = parse_args()
# Change the following for sorting
args.backbone_type = 'none'
set_seed(args.seed, False)
if not os.path.exists(args.log_dir): os.makedirs(args.log_dir)
# Data
train_data = SortDataset(args.N_to_sort)
test_data = SortDataset(args.N_to_sort)
trainloader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=1)
testloader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=1, drop_last=False)
prediction_reshaper = [-1] # Problem specific
args.out_dims = args.N_to_sort + 1
# For total reproducibility
# Python 3.x
zip_python_code(f'{args.log_dir}/repo_state.zip')
with open(f'{args.log_dir}/args.txt', 'w') as f:
print(args, file=f)
# Configure device string (support MPS on macOS)
if args.device[0] != -1:
device = f'cuda:{args.device[0]}'
elif torch.backends.mps.is_available():
device = 'mps'
else:
device = 'cpu'
print(f'Running model {args.model} on {device}')
# Build model
model = ContinuousThoughtMachineSORT(
iterations=args.iterations,
d_model=args.d_model,
d_input=args.out_dims-1,
heads=args.heads,
n_synch_out=args.n_synch_out,
n_synch_action=args.n_synch_action,
synapse_depth=args.synapse_depth,
memory_length=args.memory_length,
deep_nlms=args.deep_memory,
memory_hidden_dims=args.memory_hidden_dims,
do_layernorm_nlm=args.do_normalisation,
backbone_type='none',
positional_embedding_type=args.positional_embedding_type,
out_dims=args.out_dims,
prediction_reshaper=prediction_reshaper,
dropout=args.dropout,
dropout_nlm=args.dropout_nlm,
neuron_select_type=args.neuron_select_type,
n_random_pairing_self=args.n_random_pairing_self,
).to(device)
model.train()
# For lazy modules so that we can get param count
pseudo_inputs = train_data.__getitem__(0)[0].unsqueeze(0).to(device)
model(pseudo_inputs)
print(f'Total params: {sum(p.numel() for p in model.parameters())}')
# Optimizer and scheduler
decay_params = []
no_decay_params = []
no_decay_names = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # Skip parameters that don't require gradients
if any(exclusion_str in name for exclusion_str in args.weight_decay_exclusion_list):
no_decay_params.append(param)
no_decay_names.append(name)
else:
decay_params.append(param)
if len(no_decay_names):
print(f'WARNING, excluding: {no_decay_names}')
# Optimizer and scheduler (Common setup)
if len(no_decay_names) and args.weight_decay!=0:
optimizer = torch.optim.AdamW([{'params': decay_params, 'weight_decay':args.weight_decay},
{'params': no_decay_params, 'weight_decay':0}],
lr=args.lr,
eps=1e-8 if not args.use_amp else 1e-6)
else:
optimizer = torch.optim.AdamW(model.parameters(),
lr=args.lr,
eps=1e-8 if not args.use_amp else 1e-6,
weight_decay=args.weight_decay)
warmup_schedule = warmup(args.warmup_steps)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warmup_schedule.step)
if args.use_scheduler:
if args.scheduler_type == 'multistep':
scheduler = WarmupMultiStepLR(optimizer, warmup_steps=args.warmup_steps, milestones=args.milestones, gamma=args.gamma)
elif args.scheduler_type == 'cosine':
scheduler = WarmupCosineAnnealingLR(optimizer, args.warmup_steps, args.training_iterations, warmup_start_lr=1e-20, eta_min=1e-7)
else:
raise NotImplementedError
# Metrics tracking (I like custom)
# Using batched estimates
start_iter = 0 # For reloading, keep track of this (pretty tqdm stuff needs it)
train_losses = []
test_losses = []
train_accuracies = [] # This will be per internal tick, not so simple
test_accuracies = []
train_accuracies_full_list = [] # This will be selected according to what is returned by loss function
test_accuracies_full_list = []
iters = []
# Now that everything is initliased, reload if desired
scaler = torch.amp.GradScaler("cuda" if "cuda" in device else "cpu", enabled=args.use_amp)
if args.reload:
if os.path.isfile(f'{args.log_dir}/checkpoint.pt'):
print(f'Reloading from: {args.log_dir}/checkpoint.pt')
checkpoint = torch.load(f'{args.log_dir}/checkpoint.pt', map_location=device, weights_only=False)
model.load_state_dict(checkpoint['model_state_dict'], strict=True)
if not args.reload_model_only:
print('Reloading optimizer etc.')
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
scaler.load_state_dict(checkpoint['scaler_state_dict'])
start_iter = checkpoint['iteration']
train_losses = checkpoint['train_losses']
train_accuracies_full_list = checkpoint['train_accuracies_full_list']
train_accuracies = checkpoint['train_accuracies']
test_losses = checkpoint['test_losses']
test_accuracies_full_list = checkpoint['test_accuracies_full_list']
test_accuracies = checkpoint['test_accuracies']
iters = checkpoint['iters']
else:
print('Only relading model!')
if 'torch_rng_state' in checkpoint:
# Reset seeds, otherwise mid-way training can be obscure (particularly for imagenet)
torch.set_rng_state(checkpoint['torch_rng_state'].cpu().byte())
np.random.set_state(checkpoint['numpy_rng_state'])
random.setstate(checkpoint['random_rng_state'])
del checkpoint
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
if args.do_compile:
print('Compiling...')
model.synapses = torch.compile(model.synapses, mode='reduce-overhead', fullgraph=True)
model.backbone = torch.compile(model.backbone, mode='reduce-overhead', fullgraph=True)
# Training
iterator = iter(trainloader) # Not training in epochs, but rather iterations. Need to reset this from time to time
with tqdm(total=args.training_iterations, initial=start_iter, leave=False, position=0, dynamic_ncols=True) as pbar:
for bi in range(start_iter, args.training_iterations):
current_lr = optimizer.param_groups[-1]['lr']
try:
inputs, targets = next(iterator)
except StopIteration:
iterator = iter(trainloader)
inputs, targets = next(iterator)
inputs = inputs.to(device)
targets = targets.to(device)
with torch.autocast(device_type="cuda" if "cuda" in device else "cpu", dtype=torch.float16, enabled=args.use_amp):
if args.do_compile:
torch.compiler.cudagraph_mark_step_begin()
predictions, certainties, synchronisation = model(inputs)
loss = sort_loss(predictions, targets)
scaler.scale(loss).backward()
if args.gradient_clipping!=-1:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=args.gradient_clipping)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
scheduler.step()
accuracy = compute_ctc_accuracy(predictions, targets, predictions.shape[1]-1)
pbar.set_description(f'Sorting {args.N_to_sort} real numbers. Loss={loss.item():0.3f}. Accuracy={accuracy:0.3f}. LR={current_lr:0.6f}')
# Metrics tracking and plotting
if bi%args.track_every==0:# and bi != 0:
model.eval()
with torch.inference_mode():
inputs, targets = next(iter(testloader))
inputs = inputs.to(device)
targets = targets.to(device)
pbar.set_description('Tracking: Processing test data')
predictions, certainties, synchronisation, pre_activations, post_activations, _ = model(inputs, track=True)
pbar.set_description('Tracking: Neural dynamics')
plot_neural_dynamics(post_activations, 100, args.log_dir)
imgi = 0
##################################### TRAIN METRICS
all_predictions = []
all_targets = []
all_losses = []
iters.append(bi)
pbar.set_description('Tracking: Computing loss and accuracy for curves')
with torch.inference_mode():
loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size_test, shuffle=True, num_workers=1)
with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
for inferi, (inputs, targets) in enumerate(loader):
inputs = inputs.to(device)
targets = targets.to(device)
these_predictions, certainties, synchronisation = model(inputs)
loss = sort_loss(these_predictions, targets)
all_losses.append(loss.item())
all_targets.append(targets.detach().cpu().numpy())
decoded = [d[:targets.shape[1]] for d in decode_predictions(these_predictions, predictions.shape[1]-1)]
decoded = torch.stack([torch.concatenate((d, torch.zeros(targets.shape[1] - len(d), device=targets.device)+targets.shape[1])) if len(d) < targets.shape[1] else d for d in decoded], 0)
all_predictions.append(decoded.detach().cpu().numpy())
if args.n_test_batches!=-1 and inferi%args.n_test_batches==0 and inferi!=0 : break
pbar_inner.set_description('Computing metrics for train')
pbar_inner.update(1)
all_predictions = np.concatenate(all_predictions)
all_targets = np.concatenate(all_targets)
train_accuracies.append((all_predictions==all_targets).mean())
train_accuracies_full_list.append((all_predictions==all_targets).all(-1).mean())
train_losses.append(np.mean(all_losses))
##################################### TEST METRICS
all_predictions = []
all_targets = []
all_losses = []
loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=1)
with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
for inferi, (inputs, targets) in enumerate(loader):
inputs = inputs.to(device)
targets = targets.to(device)
these_predictions, certainties, synchronisation = model(inputs)
loss = sort_loss(these_predictions, targets)
all_losses.append(loss.item())
all_targets.append(targets.detach().cpu().numpy())
decoded = [d[:targets.shape[1]] for d in decode_predictions(these_predictions, predictions.shape[1]-1)]
decoded = torch.stack([torch.concatenate((d, torch.zeros(targets.shape[1] - len(d), device=targets.device)+targets.shape[1])) if len(d) < targets.shape[1] else d for d in decoded], 0)
all_predictions.append(decoded.detach().cpu().numpy())
if args.n_test_batches!=-1 and inferi%args.n_test_batches==0 and inferi!=0 : break
pbar_inner.set_description('Computing metrics for train')
pbar_inner.update(1)
all_predictions = np.concatenate(all_predictions)
all_targets = np.concatenate(all_targets)
test_accuracies.append((all_predictions==all_targets).mean())
test_accuracies_full_list.append((all_predictions==all_targets).all(-1).mean())
test_losses.append(np.mean(all_losses))
figacc = plt.figure(figsize=(10, 10))
axacc_train = figacc.add_subplot(211)
axacc_test = figacc.add_subplot(212)
cm = sns.color_palette("viridis", as_cmap=True)
axacc_train.plot(iters, train_accuracies, 'b-', alpha=0.7, label='Find grained')
axacc_train.plot(iters, train_accuracies_full_list, 'k--', alpha=0.7, label='Full list')
axacc_test.plot(iters, test_accuracies, 'b-', alpha=0.7, label='Fine grained')
axacc_test.plot(iters, test_accuracies_full_list, 'k--', alpha=0.7, label='Full list')
axacc_train.set_title('Train')
axacc_test.set_title('Test')
axacc_train.legend(loc='lower right')
axacc_train.set_xlim([0, args.training_iterations])
axacc_test.set_xlim([0, args.training_iterations])
figacc.tight_layout()
figacc.savefig(f'{args.log_dir}/accuracies.png', dpi=150)
plt.close(figacc)
figloss = plt.figure(figsize=(10, 5))
axloss = figloss.add_subplot(111)
axloss.plot(iters, train_losses, 'b-', linewidth=1, alpha=0.8, label=f'Train: {train_losses[-1]}')
axloss.plot(iters, test_losses, 'r-', linewidth=1, alpha=0.8, label=f'Test: {test_losses[-1]}')
axloss.legend(loc='upper right')
axloss.set_xlim([0, args.training_iterations])
figloss.tight_layout()
figloss.savefig(f'{args.log_dir}/losses.png', dpi=150)
plt.close(figloss)
model.train()
# Save model
if (bi%args.save_every==0 or bi==args.training_iterations-1) and bi != start_iter:
torch.save(
{
'model_state_dict':model.state_dict(),
'optimizer_state_dict':optimizer.state_dict(),
'scheduler_state_dict':scheduler.state_dict(),
'scaler_state_dict':scaler.state_dict(),
'iteration':bi,
'train_accuracies_full_list':train_accuracies_full_list,
'train_accuracies':train_accuracies,
'test_accuracies_full_list':test_accuracies_full_list,
'test_accuracies':test_accuracies,
'train_losses':train_losses,
'test_losses':test_losses,
'iters':iters,
'args':args,
'torch_rng_state': torch.get_rng_state(),
'numpy_rng_state': np.random.get_state(),
'random_rng_state': random.getstate(),
} , f'{args.log_dir}/checkpoint.pt')
pbar.update(1)
|