Spaces:
Sleeping
Sleeping
Commit
·
2ac7b58
1
Parent(s):
8df8155
Upload AI Search.ipynb
Browse files- tmp/AI Search.ipynb +443 -0
tmp/AI Search.ipynb
ADDED
|
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "8495bede-ab8f-416b-b5f2-6a76b1e63935",
|
| 7 |
+
"metadata": {
|
| 8 |
+
"tags": []
|
| 9 |
+
},
|
| 10 |
+
"outputs": [
|
| 11 |
+
{
|
| 12 |
+
"name": "stderr",
|
| 13 |
+
"output_type": "stream",
|
| 14 |
+
"text": [
|
| 15 |
+
"D:\\Projects\\LLMs\\venv\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 16 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
| 17 |
+
]
|
| 18 |
+
}
|
| 19 |
+
],
|
| 20 |
+
"source": [
|
| 21 |
+
"from tqdm import tqdm\n",
|
| 22 |
+
"from sentence_transformers import SentenceTransformer, util"
|
| 23 |
+
]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "code",
|
| 27 |
+
"execution_count": 2,
|
| 28 |
+
"id": "2b8cae6d-547b-4018-9f68-b0a45284b4b4",
|
| 29 |
+
"metadata": {
|
| 30 |
+
"tags": []
|
| 31 |
+
},
|
| 32 |
+
"outputs": [],
|
| 33 |
+
"source": [
|
| 34 |
+
"# model = SentenceTransformer('DMetaSoul/sbert-chinese-general-v2')\n",
|
| 35 |
+
"model = SentenceTransformer('TintinMeimei/menglang_yongtulv_aimatch_v1')"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"execution_count": 3,
|
| 41 |
+
"id": "d3907a6f-f8ab-40fe-8702-c8cb81e189c6",
|
| 42 |
+
"metadata": {
|
| 43 |
+
"tags": []
|
| 44 |
+
},
|
| 45 |
+
"outputs": [],
|
| 46 |
+
"source": [
|
| 47 |
+
"def sim(text1, text2):\n",
|
| 48 |
+
" emb1 = model.encode(text1, convert_to_tensor=True)\n",
|
| 49 |
+
" emb2 = model.encode(text2, convert_to_tensor=True)\n",
|
| 50 |
+
" score = util.cos_sim(emb1, emb2)\n",
|
| 51 |
+
" return score"
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"cell_type": "code",
|
| 56 |
+
"execution_count": 24,
|
| 57 |
+
"id": "3cec9f05-4ea9-46f8-a393-950c67a0150a",
|
| 58 |
+
"metadata": {
|
| 59 |
+
"tags": []
|
| 60 |
+
},
|
| 61 |
+
"outputs": [],
|
| 62 |
+
"source": [
|
| 63 |
+
"text1 = '挂机空调'\n",
|
| 64 |
+
"# text2 = '1.1.11 高效节能家用电器制造\\n包括节能型房间空调器、空调机组、电冰箱、电动洗衣机、平板电视机、电风扇等家用电器制造。房间空气调节器能效优于《房间空气调节器能效限定值及能效等级》(GB 12021.3)标准1级能效水平;转速可控型房间空气调节器能效优于《转速可控型房间空气调节器能效限定值及能效等级》(GB 21455)标准1级能效水平;多联式空调(热泵)机组能效比优于《多联式空调(热泵)机组能效限定值及能源效率等级》(GB 21454)标准1级能效水平;家用电冰箱能效优于《家用电冰箱耗电量限定值及能效等级》(GB 12021.2)标准1级能效水平;电动洗衣机能效优于《电动洗衣机能效水效限定值及等级》(GB 12021.4)标准1级能效水平;电饭煲能效优于《电饭锅能效限定值及能效等级》(GB 12021.6)标准1级能效水平;平板电视机能效优于《平板电视能效限定值及能效等级》(GB 24850)标准1级能效水平;交流电风扇能效优于《交流电风扇能效限定值及能效等级》(GB 12021.9)标准1级能效水平。其他高效节能家用电器能效均优于相应国家强制性标准1级能效水平。'\n",
|
| 65 |
+
"# text2 = '包括节能泵、节能型真空干燥设备、节能型真空炉等设备制造。清水离心泵能效指标优于《清水离心泵能效限定值及节能评价值》(GB 19762)标准中节能评价值水平;石油化工离心泵能效优于《石油化工离心泵能效限定值及能效等级》(GB 32284)标准中1级能效水平;潜水电泵能效优于《井用潜水电泵能效限定值及能效等级》(GB 32030)、《小型潜水电泵能效限定值及能效等级》(GB 32029)、《污水污物潜水电泵能效限定值及能效等级》(GB 32031)标准中1级能效水平。'\n",
|
| 66 |
+
"text2 = '退耕还林'"
|
| 67 |
+
]
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"cell_type": "code",
|
| 71 |
+
"execution_count": 25,
|
| 72 |
+
"id": "d570bf57-2518-4306-a7ae-712e81199460",
|
| 73 |
+
"metadata": {
|
| 74 |
+
"tags": []
|
| 75 |
+
},
|
| 76 |
+
"outputs": [
|
| 77 |
+
{
|
| 78 |
+
"data": {
|
| 79 |
+
"text/plain": [
|
| 80 |
+
"tensor([[-0.5000]], device='cuda:0')"
|
| 81 |
+
]
|
| 82 |
+
},
|
| 83 |
+
"execution_count": 25,
|
| 84 |
+
"metadata": {},
|
| 85 |
+
"output_type": "execute_result"
|
| 86 |
+
}
|
| 87 |
+
],
|
| 88 |
+
"source": [
|
| 89 |
+
"sim(text1, text2)"
|
| 90 |
+
]
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"cell_type": "markdown",
|
| 94 |
+
"id": "040cc794-9bb0-4c22-986c-933ca55ee637",
|
| 95 |
+
"metadata": {},
|
| 96 |
+
"source": [
|
| 97 |
+
"### Process Data"
|
| 98 |
+
]
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"cell_type": "code",
|
| 102 |
+
"execution_count": 6,
|
| 103 |
+
"id": "d46e4e74-f7c2-4339-b009-4ba77f1b2f9a",
|
| 104 |
+
"metadata": {
|
| 105 |
+
"tags": []
|
| 106 |
+
},
|
| 107 |
+
"outputs": [
|
| 108 |
+
{
|
| 109 |
+
"data": {
|
| 110 |
+
"text/html": [
|
| 111 |
+
"<div>\n",
|
| 112 |
+
"<style scoped>\n",
|
| 113 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 114 |
+
" vertical-align: middle;\n",
|
| 115 |
+
" }\n",
|
| 116 |
+
"\n",
|
| 117 |
+
" .dataframe tbody tr th {\n",
|
| 118 |
+
" vertical-align: top;\n",
|
| 119 |
+
" }\n",
|
| 120 |
+
"\n",
|
| 121 |
+
" .dataframe thead th {\n",
|
| 122 |
+
" text-align: right;\n",
|
| 123 |
+
" }\n",
|
| 124 |
+
"</style>\n",
|
| 125 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 126 |
+
" <thead>\n",
|
| 127 |
+
" <tr style=\"text-align: right;\">\n",
|
| 128 |
+
" <th></th>\n",
|
| 129 |
+
" <th>X1</th>\n",
|
| 130 |
+
" <th>X2</th>\n",
|
| 131 |
+
" <th>Y</th>\n",
|
| 132 |
+
" <th>Split</th>\n",
|
| 133 |
+
" </tr>\n",
|
| 134 |
+
" </thead>\n",
|
| 135 |
+
" <tbody>\n",
|
| 136 |
+
" <tr>\n",
|
| 137 |
+
" <th>0</th>\n",
|
| 138 |
+
" <td>中新制药厂空调末端送回风系统改造-询价公示</td>\n",
|
| 139 |
+
" <td>1.1.11 高效节能家用电器制造\\n包括节能型房间空调器、空调机组、电冰箱、电动洗衣机、平...</td>\n",
|
| 140 |
+
" <td>1</td>\n",
|
| 141 |
+
" <td>train</td>\n",
|
| 142 |
+
" </tr>\n",
|
| 143 |
+
" <tr>\n",
|
| 144 |
+
" <th>1</th>\n",
|
| 145 |
+
" <td>中新制药厂空调末端送回风系统改造-询价公示</td>\n",
|
| 146 |
+
" <td>1.5.1 锅炉(窑炉)节能改造和能效提升\\n包括燃煤锅炉“以大代小”,采用先进燃煤锅炉、节...</td>\n",
|
| 147 |
+
" <td>0</td>\n",
|
| 148 |
+
" <td>train</td>\n",
|
| 149 |
+
" </tr>\n",
|
| 150 |
+
" </tbody>\n",
|
| 151 |
+
"</table>\n",
|
| 152 |
+
"</div>"
|
| 153 |
+
],
|
| 154 |
+
"text/plain": [
|
| 155 |
+
" X1 X2 \\\n",
|
| 156 |
+
"0 中新制药厂空调末端送回风系统改造-询价公示 1.1.11 高效节能家用电器制造\\n包括节能型房间空调器、空调机组、电冰箱、电动洗衣机、平... \n",
|
| 157 |
+
"1 中新制药厂空调末端送回风系统改造-询价公示 1.5.1 锅炉(窑炉)节能改造和能效提升\\n包括燃煤锅炉“以大代小”,采用先进燃煤锅炉、节... \n",
|
| 158 |
+
"\n",
|
| 159 |
+
" Y Split \n",
|
| 160 |
+
"0 1 train \n",
|
| 161 |
+
"1 0 train "
|
| 162 |
+
]
|
| 163 |
+
},
|
| 164 |
+
"execution_count": 6,
|
| 165 |
+
"metadata": {},
|
| 166 |
+
"output_type": "execute_result"
|
| 167 |
+
}
|
| 168 |
+
],
|
| 169 |
+
"source": [
|
| 170 |
+
"import pandas as pd\n",
|
| 171 |
+
"\n",
|
| 172 |
+
"df_data = pd.read_excel('AI匹配算法样本.xlsx', sheet_name='Sheet1', dtype=str)\n",
|
| 173 |
+
"df_data.head(2)"
|
| 174 |
+
]
|
| 175 |
+
},
|
| 176 |
+
{
|
| 177 |
+
"cell_type": "code",
|
| 178 |
+
"execution_count": 7,
|
| 179 |
+
"id": "673ce0e0-2801-4bb3-8e5d-5c4aff3ac725",
|
| 180 |
+
"metadata": {
|
| 181 |
+
"tags": []
|
| 182 |
+
},
|
| 183 |
+
"outputs": [
|
| 184 |
+
{
|
| 185 |
+
"name": "stderr",
|
| 186 |
+
"output_type": "stream",
|
| 187 |
+
"text": [
|
| 188 |
+
"C:\\Users\\vermouth\\AppData\\Local\\Temp\\ipykernel_22160\\3257358016.py:1: FutureWarning: Using short name for 'orient' is deprecated. Only the options: ('dict', list, 'series', 'split', 'records', 'index') will be used in a future version. Use one of the above to silence this warning.\n",
|
| 189 |
+
" train_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='train']\n",
|
| 190 |
+
"C:\\Users\\vermouth\\AppData\\Local\\Temp\\ipykernel_22160\\3257358016.py:2: FutureWarning: Using short name for 'orient' is deprecated. Only the options: ('dict', list, 'series', 'split', 'records', 'index') will be used in a future version. Use one of the above to silence this warning.\n",
|
| 191 |
+
" eval_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='eval']\n",
|
| 192 |
+
"C:\\Users\\vermouth\\AppData\\Local\\Temp\\ipykernel_22160\\3257358016.py:3: FutureWarning: Using short name for 'orient' is deprecated. Only the options: ('dict', list, 'series', 'split', 'records', 'index') will be used in a future version. Use one of the above to silence this warning.\n",
|
| 193 |
+
" test_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='test']\n"
|
| 194 |
+
]
|
| 195 |
+
}
|
| 196 |
+
],
|
| 197 |
+
"source": [
|
| 198 |
+
"train_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='train']\n",
|
| 199 |
+
"eval_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='eval']\n",
|
| 200 |
+
"test_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='test']"
|
| 201 |
+
]
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"cell_type": "markdown",
|
| 205 |
+
"id": "5037803d-980d-48a1-a61d-528bb9508ce0",
|
| 206 |
+
"metadata": {},
|
| 207 |
+
"source": [
|
| 208 |
+
"### Model 1 - Fine tune a Sentence Transformer"
|
| 209 |
+
]
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"cell_type": "code",
|
| 213 |
+
"execution_count": 8,
|
| 214 |
+
"id": "773429e9-57ce-418f-ad44-3c35d1b31a74",
|
| 215 |
+
"metadata": {},
|
| 216 |
+
"outputs": [],
|
| 217 |
+
"source": [
|
| 218 |
+
"# from sentence_transformers import InputExample, losses\n",
|
| 219 |
+
"# from torch.utils.data import DataLoader\n",
|
| 220 |
+
"\n",
|
| 221 |
+
"# # Prepare data\n",
|
| 222 |
+
"# train_data_sbert = []\n",
|
| 223 |
+
"# eval_data_sbert = []\n",
|
| 224 |
+
"# test_data_sbert = []\n",
|
| 225 |
+
"\n",
|
| 226 |
+
"# for item in train_data:\n",
|
| 227 |
+
"# label = 1.0 if float(item.get('Y')) == 1 else -1.0\n",
|
| 228 |
+
"# train_data_sbert.append(InputExample(texts=[item.get('X1'), item.get('X2')], label=label))\n",
|
| 229 |
+
"# train_dataloader = DataLoader(train_data_sbert, shuffle=True, batch_size=2)\n",
|
| 230 |
+
"# train_loss = losses.CosineSimilarityLoss(model)"
|
| 231 |
+
]
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"cell_type": "code",
|
| 235 |
+
"execution_count": 9,
|
| 236 |
+
"id": "ec1b68cb-bec3-4896-b196-ec31b1132ad1",
|
| 237 |
+
"metadata": {},
|
| 238 |
+
"outputs": [],
|
| 239 |
+
"source": [
|
| 240 |
+
"# from sentence_transformers import evaluation\n",
|
| 241 |
+
"# evaluator = evaluation.EmbeddingSimilarityEvaluator([item.get('X1') for item in eval_data], [item.get('X2') for item in eval_data], [1.0 if float(item.get('Y'))==1 else -1.0 for item in eval_data])"
|
| 242 |
+
]
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"cell_type": "code",
|
| 246 |
+
"execution_count": 10,
|
| 247 |
+
"id": "7c05c6ef-c5e7-416b-b797-9f8735ae5436",
|
| 248 |
+
"metadata": {},
|
| 249 |
+
"outputs": [],
|
| 250 |
+
"source": [
|
| 251 |
+
"# model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=1, warmup_steps=100, evaluator=evaluator, evaluation_steps=500)"
|
| 252 |
+
]
|
| 253 |
+
},
|
| 254 |
+
{
|
| 255 |
+
"cell_type": "code",
|
| 256 |
+
"execution_count": 11,
|
| 257 |
+
"id": "7de1e5f0-4b83-4d34-8385-77cdaa0ef08f",
|
| 258 |
+
"metadata": {},
|
| 259 |
+
"outputs": [],
|
| 260 |
+
"source": [
|
| 261 |
+
"# model.save('./tmp_model')"
|
| 262 |
+
]
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"cell_type": "markdown",
|
| 266 |
+
"id": "fdd686b1-c654-4135-8989-05f23c914afa",
|
| 267 |
+
"metadata": {
|
| 268 |
+
"tags": []
|
| 269 |
+
},
|
| 270 |
+
"source": [
|
| 271 |
+
"### Model 2 - No Fine Tune + Threshold Tuning"
|
| 272 |
+
]
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"cell_type": "code",
|
| 276 |
+
"execution_count": 12,
|
| 277 |
+
"id": "a0247889-577d-4a92-8c0f-9c923748df93",
|
| 278 |
+
"metadata": {
|
| 279 |
+
"tags": []
|
| 280 |
+
},
|
| 281 |
+
"outputs": [],
|
| 282 |
+
"source": [
|
| 283 |
+
"def sim(text1, text2):\n",
|
| 284 |
+
" emb1 = model.encode(text1, convert_to_tensor=True)\n",
|
| 285 |
+
" emb2 = model.encode(text2, convert_to_tensor=True)\n",
|
| 286 |
+
" score = util.cos_sim(emb1, emb2)\n",
|
| 287 |
+
" return score\n",
|
| 288 |
+
"\n",
|
| 289 |
+
"def _acc_thres(scores, thres):\n",
|
| 290 |
+
" correct = 0\n",
|
| 291 |
+
" total = len(scores)\n",
|
| 292 |
+
" for score, truth in scores:\n",
|
| 293 |
+
" truth = float(truth)\n",
|
| 294 |
+
" pred = 1 if score >= thres else 0\n",
|
| 295 |
+
" if pred == truth:\n",
|
| 296 |
+
" correct += 1\n",
|
| 297 |
+
" return round(correct/total, 3)\n",
|
| 298 |
+
"\n",
|
| 299 |
+
"def model_train(train_data, eval_data):\n",
|
| 300 |
+
" score_train = []\n",
|
| 301 |
+
" score_eval = []\n",
|
| 302 |
+
" for item in tqdm(train_data):\n",
|
| 303 |
+
" score = sim(item['X1'], item['X2'])\n",
|
| 304 |
+
" score_train.append((score, item['Y']))\n",
|
| 305 |
+
" for item in tqdm(eval_data):\n",
|
| 306 |
+
" score = sim(item['X1'], item['X2'])\n",
|
| 307 |
+
" score_eval.append((score, item['Y']))\n",
|
| 308 |
+
" # find threshold that minize train error\n",
|
| 309 |
+
" score_train = sorted(score_train, reverse=True)\n",
|
| 310 |
+
" win_acc = -1\n",
|
| 311 |
+
" win_thres = -1\n",
|
| 312 |
+
" for thres in range(5, 100, 5):\n",
|
| 313 |
+
" thres = thres*0.01\n",
|
| 314 |
+
" acc = _acc_thres(score_train, thres)\n",
|
| 315 |
+
" if acc > win_acc:\n",
|
| 316 |
+
" win_acc = acc\n",
|
| 317 |
+
" win_thres = thres\n",
|
| 318 |
+
" eval_acc = _acc_thres(score_eval, win_thres)\n",
|
| 319 |
+
" return {'thres': win_thres, 'train_accuracy': win_acc, 'eval_accuracy': eval_acc}"
|
| 320 |
+
]
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"cell_type": "code",
|
| 324 |
+
"execution_count": 13,
|
| 325 |
+
"id": "4e943ef9-ad40-494e-9d53-db9ccbf48bb4",
|
| 326 |
+
"metadata": {
|
| 327 |
+
"tags": []
|
| 328 |
+
},
|
| 329 |
+
"outputs": [
|
| 330 |
+
{
|
| 331 |
+
"name": "stderr",
|
| 332 |
+
"output_type": "stream",
|
| 333 |
+
"text": [
|
| 334 |
+
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 12256/12256 [13:54<00:00, 14.69it/s]\n",
|
| 335 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4248/4248 [04:44<00:00, 14.94it/s]\n"
|
| 336 |
+
]
|
| 337 |
+
}
|
| 338 |
+
],
|
| 339 |
+
"source": [
|
| 340 |
+
"r = model_train(train_data, eval_data)"
|
| 341 |
+
]
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"cell_type": "code",
|
| 345 |
+
"execution_count": 14,
|
| 346 |
+
"id": "9cd38cc9-fe71-45b9-a22e-977a2e787fb5",
|
| 347 |
+
"metadata": {
|
| 348 |
+
"tags": []
|
| 349 |
+
},
|
| 350 |
+
"outputs": [
|
| 351 |
+
{
|
| 352 |
+
"data": {
|
| 353 |
+
"text/plain": [
|
| 354 |
+
"{'thres': 0.25, 'train_accuracy': 0.831, 'eval_accuracy': 0.816}"
|
| 355 |
+
]
|
| 356 |
+
},
|
| 357 |
+
"execution_count": 14,
|
| 358 |
+
"metadata": {},
|
| 359 |
+
"output_type": "execute_result"
|
| 360 |
+
}
|
| 361 |
+
],
|
| 362 |
+
"source": [
|
| 363 |
+
"r"
|
| 364 |
+
]
|
| 365 |
+
},
|
| 366 |
+
{
|
| 367 |
+
"cell_type": "code",
|
| 368 |
+
"execution_count": 15,
|
| 369 |
+
"id": "53622ff1-7465-4663-a9f0-0c18df37b93e",
|
| 370 |
+
"metadata": {
|
| 371 |
+
"tags": []
|
| 372 |
+
},
|
| 373 |
+
"outputs": [
|
| 374 |
+
{
|
| 375 |
+
"name": "stderr",
|
| 376 |
+
"output_type": "stream",
|
| 377 |
+
"text": [
|
| 378 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4468/4468 [04:58<00:00, 14.98it/s]\n"
|
| 379 |
+
]
|
| 380 |
+
}
|
| 381 |
+
],
|
| 382 |
+
"source": [
|
| 383 |
+
"score_test = []\n",
|
| 384 |
+
"for item in tqdm(test_data):\n",
|
| 385 |
+
" score = sim(item['X1'], item['X2'])\n",
|
| 386 |
+
" score_test.append((score, item['Y']))"
|
| 387 |
+
]
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"cell_type": "code",
|
| 391 |
+
"execution_count": 17,
|
| 392 |
+
"id": "47411f71-c774-4274-a1af-2a128589b559",
|
| 393 |
+
"metadata": {
|
| 394 |
+
"tags": []
|
| 395 |
+
},
|
| 396 |
+
"outputs": [
|
| 397 |
+
{
|
| 398 |
+
"data": {
|
| 399 |
+
"text/plain": [
|
| 400 |
+
"0.815"
|
| 401 |
+
]
|
| 402 |
+
},
|
| 403 |
+
"execution_count": 17,
|
| 404 |
+
"metadata": {},
|
| 405 |
+
"output_type": "execute_result"
|
| 406 |
+
}
|
| 407 |
+
],
|
| 408 |
+
"source": [
|
| 409 |
+
"_acc_thres(score_test, r['thres'])\n",
|
| 410 |
+
"#_acc_thres(score_test, 0.25)"
|
| 411 |
+
]
|
| 412 |
+
},
|
| 413 |
+
{
|
| 414 |
+
"cell_type": "code",
|
| 415 |
+
"execution_count": null,
|
| 416 |
+
"id": "59b741bc-7a20-4ed0-bc9d-b82ec3edff34",
|
| 417 |
+
"metadata": {},
|
| 418 |
+
"outputs": [],
|
| 419 |
+
"source": []
|
| 420 |
+
}
|
| 421 |
+
],
|
| 422 |
+
"metadata": {
|
| 423 |
+
"kernelspec": {
|
| 424 |
+
"display_name": "Python 3 (ipykernel)",
|
| 425 |
+
"language": "python",
|
| 426 |
+
"name": "python3"
|
| 427 |
+
},
|
| 428 |
+
"language_info": {
|
| 429 |
+
"codemirror_mode": {
|
| 430 |
+
"name": "ipython",
|
| 431 |
+
"version": 3
|
| 432 |
+
},
|
| 433 |
+
"file_extension": ".py",
|
| 434 |
+
"mimetype": "text/x-python",
|
| 435 |
+
"name": "python",
|
| 436 |
+
"nbconvert_exporter": "python",
|
| 437 |
+
"pygments_lexer": "ipython3",
|
| 438 |
+
"version": "3.10.0"
|
| 439 |
+
}
|
| 440 |
+
},
|
| 441 |
+
"nbformat": 4,
|
| 442 |
+
"nbformat_minor": 5
|
| 443 |
+
}
|