Spaces:
Sleeping
Sleeping
| import os | |
| import sys | |
| PROJECT_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
| sys.path.append(PROJECT_ROOT) | |
| import yaml | |
| import argparse | |
| from lightning import Trainer | |
| from lightning.pytorch.loggers import WandbLogger | |
| from trainer import XrayReg | |
| import logging | |
| import wandb | |
| from lightning.pytorch.callbacks import LearningRateMonitor | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Train Xray Model") | |
| parser.add_argument( | |
| "--config", | |
| type=str, | |
| default="configs/config.yaml", | |
| help="Path to the config file", | |
| ) | |
| return parser.parse_args() | |
| if __name__ == "__main__": | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| try: | |
| args = parse_args() | |
| with open(args.config, "r") as ymlfile: | |
| config = yaml.safe_load(ymlfile) | |
| wandb.init( | |
| project=config.get("wandb_project", "xray_regression_noaug")) | |
| wandb_logger = WandbLogger( | |
| project=config.get("wandb_project", "xray_regression_noaug")) | |
| lr_monitor = LearningRateMonitor(logging_interval="step") | |
| trainer = Trainer( | |
| max_epochs=config["training"]["max_epochs"], | |
| log_every_n_steps=config["logging"]["log_every_n_steps"], | |
| logger=wandb_logger, | |
| callbacks=[lr_monitor]) | |
| model = XrayReg(config) | |
| logger.info("Starting training...") | |
| trainer.fit(model) | |
| logger.info("Training completed. Starting testing...") | |
| trainer.test(model) | |
| logger.info("Testing completed. Logging test results...") | |
| model.save_test_results_to_wandb() | |
| logger.info("Test results saved to Wandb") | |
| wandb.finish() | |
| except Exception as e: | |
| logger.error(f"An error occurred: {e}") | |
| sys.exit(1) | |