hrhub / utils /display_v2.py
Roger Surf
feat: add heatmap + bilateral fairness visualization + mathematical proof section
96a706d
"""
Display utilities for HRHUB Streamlit UI.
Contains formatted display components for candidates and companies.
"""
import streamlit as st
import pandas as pd
import ast
from typing import Dict, Any, List, Tuple
def display_candidate_profile(candidate):
"""
Display comprehensive candidate profile in Streamlit.
Args:
candidate: Pandas Series with candidate data
"""
st.markdown("### πŸ‘€ Candidate Profile")
st.markdown("---")
# Career Objective
with st.expander("🎯 Career Objective", expanded=True):
st.write(candidate.get('career_objective', 'Not provided'))
# Skills
with st.expander("πŸ’» Skills & Expertise", expanded=True):
try:
skills = ast.literal_eval(candidate.get('skills', '[]'))
if skills:
# Display as tags
skills_html = " ".join([f'<span style="background-color: #0066CC; color: white; padding: 5px 10px; border-radius: 15px; margin: 3px; display: inline-block;">{skill}</span>' for skill in skills[:15]])
st.markdown(skills_html, unsafe_allow_html=True)
else:
st.write("No skills listed")
except:
st.write(candidate.get('skills', 'No skills listed'))
# Education
with st.expander("πŸŽ“ Education"):
try:
institutions = ast.literal_eval(candidate.get('educational_institution_name', '[]'))
degrees = ast.literal_eval(candidate.get('degree_names', '[]'))
majors = ast.literal_eval(candidate.get('major_field_of_studies', '[]'))
years = ast.literal_eval(candidate.get('passing_years', '[]'))
if institutions and any(institutions):
for i in range(len(institutions)):
degree = degrees[i] if i < len(degrees) else 'N/A'
major = majors[i] if i < len(majors) else 'N/A'
year = years[i] if i < len(years) else 'N/A'
st.write(f"**{degree}** in {major}")
st.write(f"πŸ“ {institutions[i]}")
st.write(f"πŸ“… {year}")
if i < len(institutions) - 1:
st.write("---")
else:
st.write("No education information provided")
except:
st.write("No education information provided")
# Work Experience
with st.expander("πŸ’Ό Work Experience"):
try:
companies = ast.literal_eval(candidate.get('professional_company_names', '[]'))
positions = ast.literal_eval(candidate.get('positions', '[]'))
starts = ast.literal_eval(candidate.get('start_dates', '[]'))
ends = ast.literal_eval(candidate.get('end_dates', '[]'))
if companies and any(companies):
for i in range(len(companies)):
position = positions[i] if i < len(positions) else 'N/A'
start = starts[i] if i < len(starts) else 'N/A'
end = ends[i] if i < len(ends) else 'N/A'
st.write(f"**{position}** at {companies[i]}")
st.write(f"πŸ“… {start} - {end}")
if i < len(companies) - 1:
st.write("---")
# Show responsibilities
responsibilities = candidate.get('responsibilities', '')
if responsibilities:
st.markdown("**Key Responsibilities:**")
st.text(responsibilities)
else:
st.write("No work experience listed")
except:
st.write("No work experience listed")
def display_company_card(
company_data,
similarity_score: float,
rank: int
):
"""
Display company information as a card.
Args:
company_data: Pandas Series with company data
similarity_score: Match score
rank: Ranking position
"""
with st.container():
# Header with rank and score
col1, col2, col3 = st.columns([1, 4, 2])
with col1:
st.markdown(f"### #{rank}")
with col2:
st.markdown(f"### 🏒 {company_data.get('name', 'Unknown Company')}")
with col3:
# Color-coded score
if similarity_score >= 0.7:
color = "#00FF00" # Green
label = "Excellent"
elif similarity_score >= 0.6:
color = "#FFD700" # Gold
label = "Very Good"
elif similarity_score >= 0.5:
color = "#FFA500" # Orange
label = "Good"
else:
color = "#FF6347" # Red
label = "Fair"
st.markdown(
f'<div style="text-align: center; padding: 10px; background-color: {color}20; border: 2px solid {color}; border-radius: 10px;">'
f'<span style="font-size: 24px; font-weight: bold; color: {color};">{similarity_score:.1%}</span><br>'
f'<span style="font-size: 12px;">{label} Match</span>'
f'</div>',
unsafe_allow_html=True
)
# Company details
st.markdown(f"**Company ID:** {company_data.name}")
# Description
description = company_data.get('description', company_data.get('text', 'No description available'))
if len(str(description)) > 200:
description = str(description)[:200] + "..."
st.markdown(f"**About:** {description}")
st.markdown("---")
def display_match_table(
matches: List[Tuple[int, float, Any]],
show_top_n: int = 10
):
"""
Display match results as a formatted table.
Args:
matches: List of (company_id, score, company_data) tuples
show_top_n: Number of matches to display
"""
st.markdown(f"### 🎯 Top {show_top_n} Company Matches")
st.markdown("---")
# Prepare data for table
table_data = []
for rank, (comp_id, score, comp_data) in enumerate(matches[:show_top_n], 1):
table_data.append({
'Rank': f"#{rank}",
'Company ID': comp_id,
'Score': f"{score:.1%}",
'Match Quality': 'πŸ”₯ Excellent' if score >= 0.7 else '✨ Very Good' if score >= 0.6 else 'πŸ‘ Good' if score >= 0.5 else '⭐ Fair'
})
# Display as dataframe
df = pd.DataFrame(table_data)
# Style the dataframe
st.dataframe(
df,
use_container_width=True,
hide_index=True,
column_config={
"Rank": st.column_config.TextColumn(width="small"),
"Score": st.column_config.TextColumn(width="small"),
"Company ID": st.column_config.TextColumn(width="medium"),
"Match Quality": st.column_config.TextColumn(width="medium")
}
)
st.info("πŸ’‘ **Tip:** Scores above 0.6 indicate strong alignment between candidate skills and company requirements!")
def display_stats_overview(
candidate_data,
matches: List[Tuple[int, float, Any]]
):
"""
Display overview statistics about the matching results.
Args:
candidate_data: Candidate information
matches: List of matches
"""
st.markdown("### πŸ“Š Matching Overview")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric(
"Total Matches",
len(matches),
help="Number of companies analyzed"
)
with col2:
avg_score = sum(score for _, score, _ in matches) / len(matches) if matches else 0
st.metric(
"Average Score",
f"{avg_score:.1%}",
help="Average similarity score"
)
with col3:
excellent = sum(1 for _, score, _ in matches if score >= 0.7)
st.metric(
"Excellent Matches",
excellent,
help="Matches with score β‰₯ 70%"
)
with col4:
best_score = max((score for _, score, _ in matches), default=0)
st.metric(
"Best Match",
f"{best_score:.1%}",
help="Highest similarity score"
)
st.markdown("---")