File size: 10,443 Bytes
ec4aa90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""
Deep code analyzer using AI with RAG and MCP integration.
Supports multiple AI providers (Gemini, Nebius, OpenAI).
"""

import os
import json
import logging
from typing import Dict, List, Optional

from src.config import AIManager, GeminiSchemas

logger = logging.getLogger(__name__)


class CodeAnalyzer:
    """
    Deep analyzer for legacy code patterns using AI + RAG.
    Integrates with MCP servers for enhanced analysis.
    """
    
    def __init__(self, mcp_manager=None, search_engine=None):
        """
        Initialize Code Analyzer.
        
        Args:
            mcp_manager: Optional MCPManager instance
            search_engine: Optional CodeSearchEngine instance
        """
        self.mcp_manager = mcp_manager
        self.search_engine = search_engine
        
        # Use centralized AI manager
        self.ai_manager = AIManager()
        
        logger.info(
            f"CodeAnalyzer initialized with provider: {self.ai_manager.provider_name}, "
            f"model: {self.ai_manager.model_name}"
        )

    
    async def analyze_pattern(self, files: List[str], pattern_name: str, 
                             file_contents: Dict[str, str]) -> Dict:
        """
        Deep analysis of legacy pattern with full context.
        
        Args:
            files: List of file paths to analyze
            pattern_name: Name of the pattern (e.g., "MySQLdb usage")
            file_contents: Dictionary mapping file paths to their contents
        
        Returns:
            Analysis result dictionary
        """
        logger.info(f"Analyzing pattern: {pattern_name} in {len(files)} files")
        
        # Check cache first (if MCP manager available)
        if self.mcp_manager:
            try:
                from src.mcp.memory_client import MemoryMCPClient
                memory_client = MemoryMCPClient(self.mcp_manager)
                
                pattern_id = self._generate_pattern_id(pattern_name, files)
                cached_analysis = await memory_client.retrieve_pattern_analysis(pattern_id)
                
                if cached_analysis:
                    logger.info(f"Using cached analysis for {pattern_name}")
                    return cached_analysis
            except Exception as e:
                logger.warning(f"Could not retrieve cached analysis: {e}")
        
        # Get context from search engine if available
        context = ""
        if self.search_engine:
            try:
                similar_files = self.search_engine.find_similar_patterns(
                    f"Files with {pattern_name}",
                    top_k=10
                )
                context = f"\n\nSimilar patterns found in: {', '.join([f['file_path'] for f in similar_files[:5]])}"
            except Exception as e:
                logger.warning(f"Could not get search context: {e}")
        
        # Get migration guides from Tavily if available
        migration_guides = ""
        if self.mcp_manager:
            try:
                from src.mcp.search_client import SearchMCPClient
                search_client = SearchMCPClient(self.mcp_manager)
                
                # Extract technologies from pattern name
                guides = await search_client.find_migration_guide(
                    from_tech=pattern_name.split()[0],
                    to_tech="modern alternative",
                    max_results=3
                )
                
                if guides:
                    migration_guides = "\n\nRelevant migration guides:\n"
                    for guide in guides:
                        migration_guides += f"- {guide['title']}: {guide['url']}\n"
            except Exception as e:
                logger.warning(f"Could not fetch migration guides: {e}")
        
        # Combine file contents
        code_samples = "\n\n".join([
            f"=== {file_path} ===\n{content[:1000]}..."  # Limit to first 1000 chars per file
            for file_path, content in list(file_contents.items())[:5]  # Limit to 5 files
        ])
        
        # Build analysis prompt
        prompt = f"""You are a senior software architect analyzing legacy code for modernization.

PATTERN TO ANALYZE: {pattern_name}

FILES AFFECTED: {', '.join(files)}

CODE SAMPLES:
{code_samples}

{context}
{migration_guides}

TASK: Provide a comprehensive analysis with:
1. **Current Implementation**: What the code currently does
2. **Issues**: Specific problems (security, performance, maintainability)
3. **Modern Recommendation**: Recommended library/pattern with version
4. **Migration Steps**: Detailed step-by-step migration plan
5. **Risk Assessment**: Potential risks and mitigation strategies
6. **Estimated Effort**: Time estimate for migration

Respond in JSON format with these exact keys:
{{
  "pattern": "{pattern_name}",
  "files": {json.dumps(files)},
  "analysis": "detailed analysis",
  "issues": ["issue1", "issue2", ...],
  "recommendation": "recommended approach",
  "steps": ["step1", "step2", ...],
  "risks": "risk assessment",
  "effort_hours": estimated_hours
}}
"""
        
        try:
            # Use JSON schema for guaranteed structure
            schema = GeminiSchemas.code_analysis()
            
            # Call AI with configured model
            response_text = self.ai_manager.generate_content(
                prompt=prompt,
                temperature=AIManager.TEMPERATURE_PRECISE,
                max_tokens=AIManager.MAX_OUTPUT_TOKENS_MEDIUM,
                response_format="json",
                response_schema=schema
            )
            
            # Parse JSON response
            analysis = json.loads(response_text)
            
            # Cache the analysis
            if self.mcp_manager:
                try:
                    from src.mcp.memory_client import MemoryMCPClient
                    memory_client = MemoryMCPClient(self.mcp_manager)
                    pattern_id = self._generate_pattern_id(pattern_name, files)
                    await memory_client.store_pattern_analysis(pattern_id, analysis)
                except Exception as e:
                    logger.warning(f"Could not cache analysis: {e}")
            
            logger.info(f"Analysis complete for {pattern_name}")
            return analysis
            
        except Exception as e:
            logger.error(f"Error during analysis: {e}")
            # Return fallback analysis
            return {
                "pattern": pattern_name,
                "files": files,
                "analysis": f"Error during analysis: {str(e)}",
                "issues": ["Analysis failed"],
                "recommendation": "Manual review required",
                "steps": ["Review error logs", "Retry analysis"],
                "risks": "High - analysis incomplete",
                "effort_hours": 0
            }
    
    def _generate_pattern_id(self, pattern_name: str, files: List[str]) -> str:
        """
        Generate unique ID for a pattern.
        
        Args:
            pattern_name: Name of the pattern
            files: List of files
        
        Returns:
            Unique pattern ID
        """
        import hashlib
        
        # Create hash from pattern name and sorted file list
        content = f"{pattern_name}:{'|'.join(sorted(files))}"
        return hashlib.md5(content.encode()).hexdigest()
    
    async def analyze_security_issues(self, file_path: str, code: str) -> Dict:
        """
        Analyze code for security vulnerabilities.
        
        Args:
            file_path: Path to the file
            code: Code content
        
        Returns:
            Security analysis result
        """
        logger.info(f"Analyzing security issues in {file_path}")
        
        prompt = f"""Analyze this code for security vulnerabilities:

FILE: {file_path}

CODE:
{code[:2000]}

Identify:
1. SQL injection risks
2. Hardcoded credentials
3. Insecure cryptography
4. Path traversal vulnerabilities
5. Command injection risks
6. Other security issues

Respond in JSON format:
{{
  "vulnerabilities": [
    {{
      "type": "vulnerability type",
      "severity": "critical|high|medium|low",
      "line_number": estimated_line,
      "description": "description",
      "recommendation": "how to fix"
    }}
  ],
  "security_score": 0-100
}}
"""
        
        try:
            response_text = self.ai_manager.generate_content(
                prompt=prompt,
                temperature=AIManager.TEMPERATURE_PRECISE,
                max_tokens=AIManager.MAX_OUTPUT_TOKENS_SMALL,
                response_format="json"
            )
            
            return json.loads(response_text)
            
        except Exception as e:
            logger.error(f"Error during security analysis: {e}")
            return {
                "vulnerabilities": [],
                "security_score": 0
            }
    
    async def suggest_refactoring(self, file_path: str, code: str) -> Dict:
        """
        Suggest code refactoring improvements.
        
        Args:
            file_path: Path to the file
            code: Code content
        
        Returns:
            Refactoring suggestions
        """
        logger.info(f"Suggesting refactoring for {file_path}")
        
        prompt = f"""Suggest refactoring improvements for this code:

FILE: {file_path}

CODE:
{code[:2000]}

Focus on:
1. Code duplication
2. Complex functions (high cyclomatic complexity)
3. Poor naming conventions
4. Missing error handling
5. Performance optimizations
6. Type hints and documentation

Respond in JSON format:
{{
  "suggestions": [
    {{
      "category": "category",
      "priority": "high|medium|low",
      "description": "what to improve",
      "benefit": "why improve it"
    }}
  ],
  "code_quality_score": 0-100
}}
"""
        
        try:
            response_text = self.ai_manager.generate_content(
                prompt=prompt,
                temperature=AIManager.TEMPERATURE_PRECISE,
                max_tokens=AIManager.MAX_OUTPUT_TOKENS_SMALL,
                response_format="json"
            )
            
            return json.loads(response_text)
            
        except Exception as e:
            logger.error(f"Error during refactoring analysis: {e}")
            return {
                "suggestions": [],
                "code_quality_score": 0
            }