Spaces:
Configuration error
Configuration error
| from __future__ import division | |
| import torch | |
| import torch.nn.functional as F | |
| import numpy as np | |
| import scipy.sparse | |
| import math | |
| from pathlib import Path | |
| data_path = Path(__file__).parent / "data" | |
| from comfy.model_management import get_torch_device | |
| from wrapper_for_mps import sparse_to_dense | |
| device = get_torch_device() | |
| class SparseMM(torch.autograd.Function): | |
| """Redefine sparse @ dense matrix multiplication to enable backpropagation. | |
| The builtin matrix multiplication operation does not support backpropagation in some cases. | |
| """ | |
| def forward(ctx, sparse, dense): | |
| ctx.req_grad = dense.requires_grad | |
| ctx.save_for_backward(sparse) | |
| return torch.matmul(sparse, dense) | |
| def backward(ctx, grad_output): | |
| grad_input = None | |
| sparse, = ctx.saved_tensors | |
| if ctx.req_grad: | |
| grad_input = torch.matmul(sparse.t(), grad_output) | |
| return None, grad_input | |
| def spmm(sparse, dense): | |
| sparse = sparse.to(device) | |
| dense = dense.to(device) | |
| return SparseMM.apply(sparse, dense) | |
| def gelu(x): | |
| """Implementation of the gelu activation function. | |
| For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): | |
| 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
| Also see https://arxiv.org/abs/1606.08415 | |
| """ | |
| return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) | |
| class BertLayerNorm(torch.nn.Module): | |
| def __init__(self, hidden_size, eps=1e-12): | |
| """Construct a layernorm module in the TF style (epsilon inside the square root). | |
| """ | |
| super(BertLayerNorm, self).__init__() | |
| self.weight = torch.nn.Parameter(torch.ones(hidden_size)) | |
| self.bias = torch.nn.Parameter(torch.zeros(hidden_size)) | |
| self.variance_epsilon = eps | |
| def forward(self, x): | |
| u = x.mean(-1, keepdim=True) | |
| s = (x - u).pow(2).mean(-1, keepdim=True) | |
| x = (x - u) / torch.sqrt(s + self.variance_epsilon) | |
| return self.weight * x + self.bias | |
| class GraphResBlock(torch.nn.Module): | |
| """ | |
| Graph Residual Block similar to the Bottleneck Residual Block in ResNet | |
| """ | |
| def __init__(self, in_channels, out_channels, mesh_type='body'): | |
| super(GraphResBlock, self).__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.lin1 = GraphLinear(in_channels, out_channels // 2) | |
| self.conv = GraphConvolution(out_channels // 2, out_channels // 2, mesh_type) | |
| self.lin2 = GraphLinear(out_channels // 2, out_channels) | |
| self.skip_conv = GraphLinear(in_channels, out_channels) | |
| # print('Use BertLayerNorm in GraphResBlock') | |
| self.pre_norm = BertLayerNorm(in_channels) | |
| self.norm1 = BertLayerNorm(out_channels // 2) | |
| self.norm2 = BertLayerNorm(out_channels // 2) | |
| def forward(self, x): | |
| trans_y = F.relu(self.pre_norm(x)).transpose(1,2) | |
| y = self.lin1(trans_y).transpose(1,2) | |
| y = F.relu(self.norm1(y)) | |
| y = self.conv(y) | |
| trans_y = F.relu(self.norm2(y)).transpose(1,2) | |
| y = self.lin2(trans_y).transpose(1,2) | |
| z = x+y | |
| return z | |
| # class GraphResBlock(torch.nn.Module): | |
| # """ | |
| # Graph Residual Block similar to the Bottleneck Residual Block in ResNet | |
| # """ | |
| # def __init__(self, in_channels, out_channels, mesh_type='body'): | |
| # super(GraphResBlock, self).__init__() | |
| # self.in_channels = in_channels | |
| # self.out_channels = out_channels | |
| # self.conv = GraphConvolution(self.in_channels, self.out_channels, mesh_type) | |
| # print('Use BertLayerNorm and GeLU in GraphResBlock') | |
| # self.norm = BertLayerNorm(self.out_channels) | |
| # def forward(self, x): | |
| # y = self.conv(x) | |
| # y = self.norm(y) | |
| # y = gelu(y) | |
| # z = x+y | |
| # return z | |
| class GraphLinear(torch.nn.Module): | |
| """ | |
| Generalization of 1x1 convolutions on Graphs | |
| """ | |
| def __init__(self, in_channels, out_channels): | |
| super(GraphLinear, self).__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.W = torch.nn.Parameter(torch.FloatTensor(out_channels, in_channels)) | |
| self.b = torch.nn.Parameter(torch.FloatTensor(out_channels)) | |
| self.reset_parameters() | |
| def reset_parameters(self): | |
| w_stdv = 1 / (self.in_channels * self.out_channels) | |
| self.W.data.uniform_(-w_stdv, w_stdv) | |
| self.b.data.uniform_(-w_stdv, w_stdv) | |
| def forward(self, x): | |
| return torch.matmul(self.W[None, :], x) + self.b[None, :, None] | |
| class GraphConvolution(torch.nn.Module): | |
| """Simple GCN layer, similar to https://arxiv.org/abs/1609.02907.""" | |
| def __init__(self, in_features, out_features, mesh='body', bias=True): | |
| super(GraphConvolution, self).__init__() | |
| self.in_features = in_features | |
| self.out_features = out_features | |
| if mesh=='body': | |
| adj_indices = torch.load(data_path / 'smpl_431_adjmat_indices.pt') | |
| adj_mat_value = torch.load(data_path / 'smpl_431_adjmat_values.pt') | |
| adj_mat_size = torch.load(data_path / 'smpl_431_adjmat_size.pt') | |
| elif mesh=='hand': | |
| adj_indices = torch.load(data_path / 'mano_195_adjmat_indices.pt') | |
| adj_mat_value = torch.load(data_path / 'mano_195_adjmat_values.pt') | |
| adj_mat_size = torch.load(data_path / 'mano_195_adjmat_size.pt') | |
| self.adjmat = sparse_to_dense(torch.sparse_coo_tensor(adj_indices, adj_mat_value, size=adj_mat_size)).to(device) | |
| self.weight = torch.nn.Parameter(torch.FloatTensor(in_features, out_features)) | |
| if bias: | |
| self.bias = torch.nn.Parameter(torch.FloatTensor(out_features)) | |
| else: | |
| self.register_parameter('bias', None) | |
| self.reset_parameters() | |
| def reset_parameters(self): | |
| # stdv = 1. / math.sqrt(self.weight.size(1)) | |
| stdv = 6. / math.sqrt(self.weight.size(0) + self.weight.size(1)) | |
| self.weight.data.uniform_(-stdv, stdv) | |
| if self.bias is not None: | |
| self.bias.data.uniform_(-stdv, stdv) | |
| def forward(self, x): | |
| if x.ndimension() == 2: | |
| support = torch.matmul(x, self.weight) | |
| output = torch.matmul(self.adjmat, support) | |
| if self.bias is not None: | |
| output = output + self.bias | |
| return output | |
| else: | |
| output = [] | |
| for i in range(x.shape[0]): | |
| support = torch.matmul(x[i], self.weight) | |
| # output.append(torch.matmul(self.adjmat, support)) | |
| output.append(spmm(self.adjmat, support)) | |
| output = torch.stack(output, dim=0) | |
| if self.bias is not None: | |
| output = output + self.bias | |
| return output | |
| def __repr__(self): | |
| return self.__class__.__name__ + ' (' \ | |
| + str(self.in_features) + ' -> ' \ | |
| + str(self.out_features) + ')' |