import gradio as gr import numpy as np import random import torch import spaces from PIL import Image from diffusers import FlowMatchEulerDiscreteScheduler from optimization import optimize_pipeline_ from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 import math from huggingface_hub import hf_hub_download from safetensors.torch import load_file import os # -------------------------- # 🔹 CONFIGURACIÓN DEL TOKEN 🔹 # -------------------------- ACCESS_TOKEN = os.environ.get("Token_Nuevo") # --- Model Loading --- dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" pipe = QwenImageEditPlusPipeline.from_pretrained( "Qwen/Qwen-Image-Edit-2509", transformer=QwenImageTransformer2DModel.from_pretrained( "linoyts/Qwen-Image-Edit-Rapid-AIO", subfolder="transformer", torch_dtype=dtype, device_map="cuda", ), torch_dtype=dtype, ).to(device) pipe.load_lora_weights( "eigen-ai-labs/eigen-banana-qwen-image-edit", weight_name="eigen-banana-qwen-image-edit-fp16-lora.safetensors", adapter_name="eigen-banana", ) pipe.set_adapters(["eigen-banana"], adapter_weights=[1.0]) pipe.fuse_lora(adapter_names=["eigen-banana"], lora_scale=1.0) pipe.unload_lora_weights() pipe.transformer.__class__ = QwenImageTransformer2DModel pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) optimize_pipeline_( pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt", ) MAX_SEED = np.iinfo(np.int32).max @spaces.GPU def convert_to_anime( image, prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, progress=gr.Progress(track_tqdm=True), ): if not prompt or prompt.strip() == "": prompt = "edit" if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) pil_images = [] if image is not None: if isinstance(image, Image.Image): pil_images.append(image.convert("RGB")) elif hasattr(image, "name"): pil_images.append(Image.open(image.name).convert("RGB")) if len(pil_images) == 0: raise gr.Error("Please upload an image first.") result = pipe( image=pil_images, prompt=prompt, height=height if height != 0 else None, width=width if width != 0 else None, num_inference_steps=num_inference_steps, generator=generator, true_cfg_scale=true_guidance_scale, num_images_per_prompt=1, ).images[0] return result, seed # --- UI --- css = ''' #col-container { max-width: 900px; margin: 0 auto; padding: 2rem; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; } .gradio-container.light { background: linear-gradient(to bottom, #f5f5f7, #ffffff); } .gradio-container.dark { background: linear-gradient(to bottom, #1a1a1a, #0d0d0d); } #title { text-align: center; font-size: 2.5rem; font-weight: 600; margin-bottom: 0.5rem; } ''' def update_dimensions_on_upload(image): if image is None: return 1024, 1024 original_width, original_height = image.size if original_width > original_height: new_width = 1024 new_height = int((original_height / original_width) * new_width) else: new_height = 1024 new_width = int((original_width / original_height) * new_height) new_width = (new_width // 8) * 8 new_height = (new_height // 8) * 8 return new_width, new_height with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: # ---------- LOGIN PANEL ---------- with gr.Column(): gr.Markdown("## 🔒 Acceso restringido") token_input = gr.Textbox( label="Introduce tu token", type="password", placeholder="Token", ) status_text = gr.Textbox( label="Estado", interactive=False, value="", ) login_btn = gr.Button("Ingresar") # ---------- APP AREA (oculta hasta login) ---------- with gr.Column(visible=False) as app_area: with gr.Column(elem_id="col-container"): gr.Markdown( "# 🍌 Eigen-Banana-Qwen-Image-Edit: Fast Image Editing with Qwen-Image-Edit LoRA", elem_id="title", ) with gr.Row(): with gr.Column(scale=1): image = gr.Image(label="Upload Photo", type="pil") prompt = gr.Textbox(label="Prompt", value="Edit") with gr.Accordion("⚙️ Advanced Settings", open=False): seed = gr.Slider(0, MAX_SEED, value=0) randomize_seed = gr.Checkbox(value=True) true_guidance_scale = gr.Slider(1.0, 10.0, value=1.0) num_inference_steps = gr.Slider(1, 40, value=4) height = gr.Slider(256, 2048, step=8, value=1024, visible=False) width = gr.Slider(256, 2048, step=8, value=1024, visible=False) convert_btn = gr.Button("Edit", variant="primary") with gr.Column(scale=1): result = gr.Image(label="Result") convert_btn.click( fn=convert_to_anime, inputs=[ image, prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, ], outputs=[result, seed], ) image.upload( fn=update_dimensions_on_upload, inputs=[image], outputs=[width, height], ) # ---------- LOGIN LOGIC ---------- def check_token_func(token_value): if token_value == ACCESS_TOKEN: return gr.update(visible=True), "Token correcto. Acceso concedido." else: return gr.update(visible=False), "Token incorrecto. Acceso denegado." login_btn.click( fn=check_token_func, inputs=token_input, outputs=[app_area, status_text], ) demo.launch()