Spaces:
Sleeping
Sleeping
Chandranshu Jain
commited on
Update app2.py
Browse files
app2.py
CHANGED
|
@@ -10,11 +10,6 @@ from langchain.prompts import PromptTemplate
|
|
| 10 |
from langchain_community.document_loaders import PyPDFLoader
|
| 11 |
from langchain_chroma import Chroma
|
| 12 |
|
| 13 |
-
configuration = {
|
| 14 |
-
"client": "PersistentClient",
|
| 15 |
-
"path": "/tmp/.chroma"
|
| 16 |
-
}
|
| 17 |
-
|
| 18 |
st.set_page_config(page_title="Document Genie", layout="wide")
|
| 19 |
|
| 20 |
st.markdown("""
|
|
@@ -32,12 +27,9 @@ Follow these simple steps to interact with the chatbot:
|
|
| 32 |
""")
|
| 33 |
|
| 34 |
def get_pdf(pdf_docs):
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
for page in pdf_reader.pages:
|
| 39 |
-
text += page.extract_text()
|
| 40 |
-
return text
|
| 41 |
|
| 42 |
def text_splitter(text):
|
| 43 |
text_splitter = RecursiveCharacterTextSplitter(
|
|
@@ -52,10 +44,7 @@ GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
|
| 52 |
|
| 53 |
def embedding(chunk):
|
| 54 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 55 |
-
|
| 56 |
-
new_client = chromadb.EphemeralClient()
|
| 57 |
-
db = Chroma.from_documents(vector, embeddings,client=new_client
|
| 58 |
-
, persist_directory="./chroma_db")
|
| 59 |
|
| 60 |
def get_conversational_chain():
|
| 61 |
prompt_template = """
|
|
|
|
| 10 |
from langchain_community.document_loaders import PyPDFLoader
|
| 11 |
from langchain_chroma import Chroma
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
st.set_page_config(page_title="Document Genie", layout="wide")
|
| 14 |
|
| 15 |
st.markdown("""
|
|
|
|
| 27 |
""")
|
| 28 |
|
| 29 |
def get_pdf(pdf_docs):
|
| 30 |
+
loader = PyPDFLoader("financialguide.pdf")
|
| 31 |
+
docs = loader.load()
|
| 32 |
+
return docs
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
def text_splitter(text):
|
| 35 |
text_splitter = RecursiveCharacterTextSplitter(
|
|
|
|
| 44 |
|
| 45 |
def embedding(chunk):
|
| 46 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 47 |
+
db = Chroma.from_documents(chunk,embeddings, persist_directory="./chroma_db")
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
def get_conversational_chain():
|
| 50 |
prompt_template = """
|