Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,497 Bytes
eb07486 86aee4e eb07486 94b0f9d eb07486 94b0f9d 66633a9 d8fe735 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 5c94a1d eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 86aee4e 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 03875f4 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 73e47b2 eb07486 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Liu Yue)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import spaces
import os
import sys
import argparse
import gradio as gr
import numpy as np
import torch
import torchaudio
import random
import librosa
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
from modelscope import snapshot_download, HubApi
from huggingface_hub import snapshot_download as hf_snapshot_download
hf_snapshot_download('FunAudioLLM/Fun-CosyVoice3-0.5B-2512', local_dir='pretrained_models/Fun-CosyVoice3-0.5B')
snapshot_download('iic/SenseVoiceSmall', local_dir='pretrained_models/SenseVoiceSmall')
hf_snapshot_download('FunAudioLLM/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
os.system(
"cd pretrained_models/CosyVoice-ttsfrd/ && "
"pip install ttsfrd_dependency-0.1-py3-none-any.whl && "
"pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl && "
"apt install -y unzip && "
"rm -rf resource && "
"unzip resource.zip -d ."
)
from cosyvoice.cli.cosyvoice import AutoModel as CosyVoiceAutoModel
from cosyvoice.utils.file_utils import logging, load_wav
from cosyvoice.utils.common import set_all_random_seed, instruct_list
# -----------------------------
# i18n (En: British spelling)
# -----------------------------
LANG_EN = "En"
LANG_ZH = "Zh"
MODE_ZERO_SHOT = "zero_shot"
MODE_INSTRUCT = "instruct"
UI_TEXT = {
LANG_EN: {
"lang_label": "Language",
"md_links": (
"### Repository [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) \n"
"Pre-trained model [Fun-CosyVoice3-0.5B](https://huggingface.co/FunAudioLLM/Fun-CosyVoice3-0.5B-2512) \n"
"[CosyVoice2-0.5B](https://www.modelscope.cn/models/iic/CosyVoice2-0.5B) \n"
"[CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M) \n"
"[CosyVoice-300M-Instruct](https://www.modelscope.cn/models/iic/CosyVoice-300M-Instruct) \n"
"[CosyVoice-300M-SFT](https://www.modelscope.cn/models/iic/CosyVoice-300M-SFT)"
),
"md_hint": "#### Enter the text to synthesise, choose an inference mode, and follow the steps.",
"tts_label": "Text to synthesise",
"tts_default": "Her handwriting is very neat, which suggests she likes things tidy.",
"mode_label": "Inference mode",
"mode_zero_shot": "3s fast voice cloning",
"mode_instruct": "Natural language control",
"steps_label": "Steps",
"steps_zero_shot": (
"1. Choose a prompt audio file, or record prompt audio (≤ 30s). If both are provided, the uploaded file is used.\n"
"2. Enter the prompt text.\n"
"3. Click Generate audio."
),
"steps_instruct": (
"1. Choose a prompt audio file, or record prompt audio (≤ 30s). If both are provided, the uploaded file is used.\n"
"2. Choose/enter the instruct text.\n"
"3. Click Generate audio."
),
"stream_label": "Streaming inference",
"stream_no": "No",
"dice": "🎲",
"seed_label": "Random inference seed",
"upload_label": "Choose prompt audio file (sample rate ≥ 16 kHz)",
"record_label": "Record prompt audio",
"prompt_text_label": "Prompt text",
"prompt_text_ph": "Enter prompt text (auto recognition supported; you can edit the result)...",
"instruct_label": "Choose instruct text",
"generate_btn": "Generate audio",
"output_label": "Synthesised audio",
"warn_too_long": "Your input text is too long; please keep it within 200 characters.",
"warn_instruct_empty": "You are using Natural language control; please enter instruct text.",
"info_instruct_need_prompt": "You are using Natural language control; please provide prompt audio.",
"warn_prompt_missing": "Prompt audio is empty. Did you forget to provide prompt audio?",
"warn_prompt_sr_low": "Prompt audio sample rate {} is below {}.",
"warn_prompt_too_long_10s": "Please keep the prompt audio within 10 seconds to avoid poor inference quality.",
"warn_prompt_text_missing": "Prompt text is empty. Did you forget to enter prompt text?",
"info_instruct_ignored": "You are using 3s fast voice cloning; instruct text will be ignored.",
"warn_invalid_mode": "Invalid mode selection.",
},
LANG_ZH: {
"lang_label": "语言",
"md_links": (
"### 代码库 [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) \n"
"预训练模型 [Fun-CosyVoice3-0.5B](https://huggingface.co/FunAudioLLM/Fun-CosyVoice3-0.5B-2512) \n"
"[CosyVoice2-0.5B](https://www.modelscope.cn/models/iic/CosyVoice2-0.5B) \n"
"[CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M) \n"
"[CosyVoice-300M-Instruct](https://www.modelscope.cn/models/iic/CosyVoice-300M-Instruct) \n"
"[CosyVoice-300M-SFT](https://www.modelscope.cn/models/iic/CosyVoice-300M-SFT)"
),
"md_hint": "#### 请输入需要合成的文本,选择推理模式,并按照提示步骤进行操作",
"tts_label": "输入合成文本",
"tts_default": "Her handwriting is [M][AY0][N][UW1][T]并且很整洁,说明她[h][ào]干净。",
"mode_label": "选择推理模式",
"mode_zero_shot": "3s极速复刻",
"mode_instruct": "自然语言控制",
"steps_label": "操作步骤",
"steps_zero_shot": (
"1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n"
"2. 输入prompt文本\n"
"3. 点击生成音频按钮"
),
"steps_instruct": (
"1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n"
"2. 输入instruct文本\n"
"3. 点击生成音频按钮"
),
"stream_label": "是否流式推理",
"stream_no": "否",
"dice": "🎲",
"seed_label": "随机推理种子",
"upload_label": "选择prompt音频文件,注意采样率不低于16khz",
"record_label": "录制prompt音频文件",
"prompt_text_label": "prompt文本",
"prompt_text_ph": "请输入prompt文本,支持自动识别,您可以自行修正识别结果...",
"instruct_label": "选择instruct文本",
"generate_btn": "生成音频",
"output_label": "合成音频",
"warn_too_long": "您输入的文字过长,请限制在200字以内",
"warn_instruct_empty": "您正在使用自然语言控制模式, 请输入instruct文本",
"info_instruct_need_prompt": "您正在使用自然语言控制模式, 请输入prompt音频",
"warn_prompt_missing": "prompt音频为空,您是否忘记输入prompt音频?",
"warn_prompt_sr_low": "prompt音频采样率{}低于{}",
"warn_prompt_too_long_10s": "请限制输入音频在10s内,避免推理效果过低",
"warn_prompt_text_missing": "prompt文本为空,您是否忘记输入prompt文本?",
"info_instruct_ignored": "您正在使用3s极速复刻模式,instruct文本会被忽略!",
"warn_invalid_mode": "无效的模式选择",
},
}
def t(lang: str, key: str) -> str:
lang = lang if lang in UI_TEXT else LANG_ZH
return UI_TEXT[lang][key]
def mode_choices(lang: str):
return [
(t(lang, "mode_zero_shot"), MODE_ZERO_SHOT),
(t(lang, "mode_instruct"), MODE_INSTRUCT),
]
def steps_for(lang: str, mode_value: str) -> str:
if mode_value == MODE_INSTRUCT:
return t(lang, "steps_instruct")
return t(lang, "steps_zero_shot")
# -----------------------------
# Audio post-process
# -----------------------------
max_val = 0.8
top_db = 60
hop_length = 220
win_length = 440
def generate_seed():
seed = random.randint(1, 100000000)
return {"__type__": "update", "value": seed}
def postprocess(wav):
speech = load_wav(wav, target_sr=target_sr, min_sr=16000)
speech, _ = librosa.effects.trim(
speech, top_db=top_db, frame_length=win_length, hop_length=hop_length
)
if speech.abs().max() > max_val:
speech = speech / speech.abs().max() * max_val
speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1)
torchaudio.save(wav, speech, target_sr)
return wav
@spaces.GPU
def prompt_wav_recognition(prompt_wav):
res = asr_model.generate(
input=prompt_wav,
language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech"
use_itn=True,
)
text = res[0]["text"].split("|>")[-1]
return text
@spaces.GPU
def generate_audio(
tts_text,
mode_value,
prompt_text,
prompt_wav_upload,
prompt_wav_record,
instruct_text,
seed,
stream,
ui_lang,
):
stream = False
if len(tts_text) > 200:
gr.Warning(t(ui_lang, "warn_too_long"))
return (target_sr, default_data)
sft_dropdown, speed = "", 1.0
if prompt_wav_upload is not None:
prompt_wav = prompt_wav_upload
elif prompt_wav_record is not None:
prompt_wav = prompt_wav_record
else:
prompt_wav = None
# instruct mode requirements
if mode_value == MODE_INSTRUCT:
if instruct_text == "":
gr.Warning(t(ui_lang, "warn_instruct_empty"))
return (target_sr, default_data)
if prompt_wav is None:
gr.Info(t(ui_lang, "info_instruct_need_prompt"))
return (target_sr, default_data)
# zero-shot requirements
if mode_value == MODE_ZERO_SHOT:
if prompt_wav is None:
gr.Warning(t(ui_lang, "warn_prompt_missing"))
return (target_sr, default_data)
info = torchaudio.info(prompt_wav)
if info.sample_rate < prompt_sr:
gr.Warning(t(ui_lang, "warn_prompt_sr_low").format(info.sample_rate, prompt_sr))
return (target_sr, default_data)
if info.num_frames / info.sample_rate > 10:
gr.Warning(t(ui_lang, "warn_prompt_too_long_10s"))
return (target_sr, default_data)
if prompt_text == "":
gr.Warning(t(ui_lang, "warn_prompt_text_missing"))
return (target_sr, default_data)
if instruct_text != "":
gr.Info(t(ui_lang, "info_instruct_ignored"))
if mode_value == MODE_ZERO_SHOT:
logging.info("get zero_shot inference request")
set_all_random_seed(seed)
speech_list = []
for i in cosyvoice.inference_zero_shot(
tts_text,
"You are a helpful assistant.<|endofprompt|>" + prompt_text,
postprocess(prompt_wav),
stream=stream,
speed=speed,
):
speech_list.append(i["tts_speech"])
return (target_sr, torch.concat(speech_list, dim=1).numpy().flatten())
if mode_value == MODE_INSTRUCT:
logging.info("get instruct inference request")
set_all_random_seed(seed)
speech_list = []
for i in cosyvoice.inference_instruct2(
tts_text,
instruct_text,
postprocess(prompt_wav),
stream=stream,
speed=speed,
):
speech_list.append(i["tts_speech"])
return (target_sr, torch.concat(speech_list, dim=1).numpy().flatten())
gr.Warning(t(ui_lang, "warn_invalid_mode"))
return (target_sr, default_data)
def on_mode_change(mode_value, ui_lang):
return steps_for(ui_lang, mode_value)
def on_language_change(ui_lang, current_mode_value):
lang = ui_lang if ui_lang in (LANG_EN, LANG_ZH) else LANG_ZH
return (
gr.update(value=UI_TEXT[lang]["md_links"]), # md_links
gr.update(value=UI_TEXT[lang]["md_hint"]), # md_hint
gr.update(label=t(lang, "lang_label")), # lang_radio label
gr.update(choices=mode_choices(lang), label=t(lang, "mode_label")), # mode radio
gr.update(value=steps_for(lang, current_mode_value), label=t(lang, "steps_label")), # steps box
gr.update(
choices=[(t(lang, "stream_no"), False)],
label=t(lang, "stream_label"),
value=False,
), # stream radio
gr.update(value=t(lang, "dice")), # seed button text
gr.update(label=t(lang, "seed_label")), # seed label
gr.update(label=t(lang, "tts_label"), value=t(lang, "tts_default")), # tts textbox
gr.update(label=t(lang, "upload_label")), # upload label
gr.update(label=t(lang, "record_label")), # record label
gr.update(label=t(lang, "prompt_text_label"), placeholder=t(lang, "prompt_text_ph")), # prompt text
gr.update(label=t(lang, "instruct_label")), # instruct dropdown
gr.update(value=t(lang, "generate_btn")), # generate button
gr.update(label=t(lang, "output_label")), # output label
)
def main():
with gr.Blocks() as demo:
md_links = gr.Markdown(UI_TEXT[LANG_ZH]["md_links"])
md_hint = gr.Markdown(UI_TEXT[LANG_ZH]["md_hint"])
lang_radio = gr.Radio(
choices=[LANG_EN, LANG_ZH],
value=LANG_ZH,
label=t(LANG_ZH, "lang_label"),
)
tts_text = gr.Textbox(
label=t(LANG_ZH, "tts_label"),
lines=1,
value=t(LANG_ZH, "tts_default"),
)
with gr.Row():
mode_radio = gr.Radio(
choices=mode_choices(LANG_ZH),
label=t(LANG_ZH, "mode_label"),
value=MODE_ZERO_SHOT,
)
steps_box = gr.Textbox(
label=t(LANG_ZH, "steps_label"),
value=steps_for(LANG_ZH, MODE_ZERO_SHOT),
lines=4,
interactive=False,
scale=0.5,
)
stream = gr.Radio(
choices=[(t(LANG_ZH, "stream_no"), False)],
label=t(LANG_ZH, "stream_label"),
value=False,
)
with gr.Column(scale=0.25):
seed_button = gr.Button(value=t(LANG_ZH, "dice"))
seed = gr.Number(value=0, label=t(LANG_ZH, "seed_label"))
with gr.Row():
prompt_wav_upload = gr.Audio(
sources="upload",
type="filepath",
label=t(LANG_ZH, "upload_label"),
)
prompt_wav_record = gr.Audio(
sources="microphone",
type="filepath",
label=t(LANG_ZH, "record_label"),
)
prompt_text = gr.Textbox(
label=t(LANG_ZH, "prompt_text_label"),
lines=1,
placeholder=t(LANG_ZH, "prompt_text_ph"),
value="",
)
instruct_text = gr.Dropdown(
choices=instruct_list,
label=t(LANG_ZH, "instruct_label"),
value=instruct_list[0],
)
generate_button = gr.Button(t(LANG_ZH, "generate_btn"))
audio_output = gr.Audio(
label=t(LANG_ZH, "output_label"),
autoplay=True,
streaming=False,
)
seed_button.click(generate_seed, inputs=[], outputs=seed)
generate_button.click(
generate_audio,
inputs=[
tts_text,
mode_radio,
prompt_text,
prompt_wav_upload,
prompt_wav_record,
instruct_text,
seed,
stream,
lang_radio, # ui_lang
],
outputs=[audio_output],
)
mode_radio.change(
fn=on_mode_change,
inputs=[mode_radio, lang_radio],
outputs=[steps_box],
)
prompt_wav_upload.change(
fn=prompt_wav_recognition,
inputs=[prompt_wav_upload],
outputs=[prompt_text],
)
prompt_wav_record.change(
fn=prompt_wav_recognition,
inputs=[prompt_wav_record],
outputs=[prompt_text],
)
lang_radio.change(
fn=on_language_change,
inputs=[lang_radio, mode_radio],
outputs=[
md_links,
md_hint,
lang_radio,
mode_radio,
steps_box,
stream,
seed_button,
seed,
tts_text,
prompt_wav_upload,
prompt_wav_record,
prompt_text,
instruct_text,
generate_button,
audio_output,
],
)
demo.queue(default_concurrency_limit=4).launch()
if __name__ == "__main__":
cosyvoice = CosyVoiceAutoModel(
model_dir="pretrained_models/Fun-CosyVoice3-0.5B",
load_trt=False,
fp16=False,
)
sft_spk = cosyvoice.list_available_spks()
for stream in [False]:
for i, j in enumerate(
cosyvoice.inference_zero_shot(
"收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。",
"You are a helpful assistant.<|endofprompt|>希望你以后能够做的比我还好呦。",
"zero_shot_prompt.wav",
stream=stream,
)
):
continue
prompt_sr = 16000
target_sr = 24000
default_data = np.zeros(target_sr)
model_dir = "pretrained_models/SenseVoiceSmall"
asr_model = AutoModel(
model=model_dir,
disable_update=True,
log_level="DEBUG",
device="cuda:0",
)
main() |