Spaces:
Sleeping
Sleeping
File size: 11,797 Bytes
5c7385e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# SPDX-FileCopyrightText: 2023-2024 The TokenSHAP Authors
import numpy as np
from typing import Dict
from .models import checkModelType, BERTModel, LlamaModelWrapper
from .helpers import build_full_prompt
import os
import csv
from .splitters import StringSplitter, TokenizerSplitter
from .tokenShap import TokenSHAP
class BiasAnalyzer:
"""Analyze bias in financial language models using TokenSHAP"""
def __init__(self, model, tokenizer, model_type, splitter_type='string', batch_size = 16, is_wrapped=False):
"""
Initialize bias analyzer
Args:
model: model
tokenizer: tokenizer
splitter_type: Type of splitter ('string' or 'tokenizer')
"""
# Check if model is already a wrapper
if is_wrapped or hasattr(model, 'generate') and hasattr(model, 'generate_batch'):
print("Using pre-wrapped model")
self.model_wrapper = model # Use the model directly
else:
# Check for bert or llama based model
if checkModelType(model) == 'bert':
self.model_wrapper = BERTModel(model, tokenizer)
elif checkModelType(model) == 'llama':
# Assuming label_ids is passed separately or handled elsewhere
raise ValueError("For Llama models, please wrap the model before passing to BiasAnalyzer or provide label_ids")
else:
raise ValueError(f"Unknown model type: {type(model)}. Only BERT and Llama models are supported.")
# Create appropriate splitter
if splitter_type == 'string':
self.splitter = StringSplitter()
elif splitter_type == 'tokenizer':
self.splitter = TokenizerSplitter(tokenizer)
else:
raise ValueError(f"Unknown splitter type: {splitter_type}")
# Initialize token SHAP
self.token_shap = TokenSHAP(self.model_wrapper, self.splitter, batch_size=batch_size)
def compare_sentences(self, original: str, mutated: str, sampling_ratio: float = 0.1, max_combinations: int = 100):
"""
Compare original and mutated sentences
Args:
original: Original financial sentence
mutated: Mutated version of the sentence
sampling_ratio: Ratio of combinations to sample
max_combinations: Maximum number of combinations
Returns:
Comparison results
"""
# Analyze both sentences
original_result = self.analyze_sentence(original, sampling_ratio, max_combinations)
mutated_result = self.analyze_sentence(mutated, sampling_ratio, max_combinations)
# Get prediction changes
prediction_change = mutated_result['prediction']['label'] != original_result['prediction']['label']
# Find common bias tokens
common_bias_tokens = set(original_result['Bias Token Ranks'].keys()) & set(mutated_result['Bias Token Ranks'].keys())
# Compare ranks for common bias tokens
bias_rank_changes = {}
for token in common_bias_tokens:
orig_rank = original_result['Bias Token Ranks'][token]['rank']
mut_rank = mutated_result['Bias Token Ranks'][token]['rank']
bias_rank_changes[token] = {
'original_rank': orig_rank,
'mutated_rank': mut_rank,
'rank_changed': orig_rank != mut_rank,
'rank_difference': mut_rank - orig_rank
}
return {
'original': original_result,
'mutated': mutated_result,
'prediction_changed': prediction_change,
'common_bias_tokens': list(common_bias_tokens),
'bias_rank_changes': bias_rank_changes
}
def analyze_sentence(self, financial_statement: str, sampling_ratio: float = 0.5, max_combinations: int = 1000):
"""
Analyze a single financial statement
Args:
financial_statement: Plain financial statement to analyze (without instructions)
sampling_ratio: Ratio of combinations to sample
max_combinations: Maximum number of combinations
Returns:
Prediction and analysis results
"""
# Create the full prompt with instructions
prefix = "Analyze the sentiment of this statement extracted from a financial news article. Provide your answer as either negative, positive, or neutral.. Text: "
suffix = ".. Answer: "
full_prompt = build_full_prompt(financial_statement, prefix, suffix)
# Get baseline prediction using the FULL prompt
prediction = self.model_wrapper.generate(prompt=full_prompt)
# Store the prefix and suffix in TokenSHAP for use in combinations
self.token_shap.prompt_prefix = prefix
self.token_shap.prompt_suffix = suffix
# Store the original statement for multi-word bias detection
self.token_shap.original_statement = financial_statement
# Run TokenSHAP analysis on ONLY the financial statement
self.token_shap.analyze(financial_statement, sampling_ratio, max_combinations)
# Get token importance values
shapley_values = self.token_shap.get_tokens_shapley_values()
shapley_values_similarity = self.token_shap.get_sim_shapley_values()
bias_tokens_ranks = self.analyze_bias_tokens_importance('data/bias', original_text=financial_statement)
return {
'sentence': financial_statement,
'prediction': prediction,
'Shapley Values': shapley_values_similarity,
'Bias Token Ranks': bias_tokens_ranks
}
def analyze_bias_tokens_importance(self, bias_files_dir: str, original_text: str = None):
"""
Analyze the importance of bias tokens in a financial statement
Args:
bias_files_dir: Directory containing files with bias terms
Returns:
Dictionary with bias analysis results including rankings
"""
# Load bias terms from files
single_word_terms, multi_word_terms = self._load_bias_terms(bias_files_dir)
# Get the original sentence and token importance values
shapley_values_similarity = self.token_shap.get_sim_shapley_values()
# Rank ALL tokens by importance (highest to lowest)
all_tokens_ranked = sorted(shapley_values_similarity.items(), key=lambda x: x[1], reverse=True)
# Create rankings dictionary with positions
total_tokens = len(all_tokens_ranked)
token_rankings = {token: {'value': value, 'rank': idx + 1}
for idx, (token, value) in enumerate(all_tokens_ranked)}
# Get the original text - use parameter if provided, otherwise try to get from object
if original_text is None:
original_text = getattr(self.token_shap, 'original_statement', '')
# Original content in lowercase for case-insensitive matching
original_text_lower = original_text.lower()
# Identify bias tokens and their rankings
bias_tokens_with_rank = {}
# 1. Process single-word terms
for token, token_data in token_rankings.items():
if token.lower() in single_word_terms:
rank = token_data['rank']
value = token_data['value']
bias_tokens_with_rank[token] = {
'shapley_value': value,
'rank': rank,
'total_tokens': total_tokens,
'percentile': round((1 - (rank - 1) / total_tokens) * 100, 1),
'type': 'single_word'
}
# 2. Process multi-word terms by checking the original sentence
for multi_word_term in multi_word_terms:
# Case insensitive check if the term exists in the original content
if multi_word_term.lower() in original_text_lower:
# Split the multi-word term into individual words
term_words = multi_word_term.lower().split()
# Find matching tokens in our token rankings
matched_tokens = []
matched_values = []
# Look for each word in the tokenized tokens
for word in term_words:
for token, data in token_rankings.items():
# Case insensitive comparison
if word == token.lower():
matched_tokens.append(token)
matched_values.append(data['value'])
break
# If we found at least one token, calculate an aggregate score
if matched_tokens:
avg_value = sum(matched_values) / len(matched_values)
# Find equivalent rank based on value
equivalent_rank = 1
for idx, (_, value) in enumerate(all_tokens_ranked):
if avg_value >= value:
equivalent_rank = idx + 1
break
equivalent_rank = idx + 2 # If lower than all, put at the end
# Add the multi-word term to results
bias_tokens_with_rank[multi_word_term] = {
'shapley_value': avg_value,
'rank': equivalent_rank,
'total_tokens': total_tokens,
'percentile': round((1 - (equivalent_rank - 1) / total_tokens) * 100, 1),
'type': 'multi_word',
'constituent_tokens': matched_tokens,
'individual_values': dict(zip(matched_tokens, matched_values))
}
return bias_tokens_with_rank
def _load_bias_terms(self, bias_files_dir: str) -> tuple:
"""
Load bias terms from files in the specified directory
Args:
bias_files_dir: Directory containing files with bias terms
Returns:
Tuple of (single_word_terms, multi_word_terms)
"""
single_word_terms = set()
multi_word_terms = set()
# Check if the directory exists
if not os.path.exists(bias_files_dir):
raise ValueError(f"Bias files directory {bias_files_dir} does not exist")
# Load terms from each file
for bias_folder in os.listdir(bias_files_dir):
folder_path = os.path.join(bias_files_dir, bias_folder)
if not os.path.isdir(folder_path):
continue
for file in os.listdir(folder_path):
file_path = os.path.join(folder_path, file)
if os.path.isfile(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
csv_reader = csv.reader(f, delimiter=';')
for row in csv_reader:
for term in row:
term = term.strip().lower()
if term:
if ' ' in term:
multi_word_terms.add(term)
else:
single_word_terms.add(term)
return single_word_terms, multi_word_terms
|