Spaces:
Running
Running
File size: 30,030 Bytes
5c7385e 8e83be6 5c7385e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
import gradio as gr
import pandas as pd
import numpy as np
import torch
# from transformers import AutoTokenizer, AutoModelForSequenceClassification
# import json
from scipy.spatial.distance import jensenshannon, cosine
# import shap
import os
from backend.model_manager import ModelManager
from backend.data_manager import DataManager
from backend.helpers import jensen_shannon_distance
model_manager = ModelManager()
data_manager = DataManager()
def load_datasets():
"""Load sample datasets with hardcoded examples"""
return True
def load_model(model_name):
"""Load model and tokenizer"""
try:
wrapped_model, tokenizer = model_manager.load_model(model_name)
return wrapped_model, tokenizer
except Exception as e:
print(f"Error loading model {model_name}: {e}")
return None, None
def get_sentiment_prediction(text, model, tokenizer):
"""Get sentiment prediction from model"""
if model is None:
# Fallback to dummy predictions for demo
return {
"label": "NM",
"probabilities": {"Negative": 0.01, "Neutral": 0.01, "Positive": 0.01}
}
try:
# Build full prompt for analysis
prefix = "Analyze the sentiment of this statement extracted from a financial news article. Provide your answer as either negative, positive, or neutral.. Text: "
suffix = ".. Answer: "
full_prompt = f"{prefix}{text}{suffix}"
# Added a small comment here.
result = model.generate(prompt=full_prompt)
return result
except Exception as e:
print(f"Error in prediction: {e}")
return {"label": "NA", "probabilities": {"Negative": 0.0, "Neutral": 0.0, "Positive": 0.0}}
def calculate_distances(orig_probs, mut_probs):
"""Calculate Jensen-Shannon distance and Cosine similarity"""
try:
js_distance = jensen_shannon_distance(orig_probs, mut_probs)
# Convert to arrays for cosine similarity
orig_array = np.array(list(orig_probs.values()))
mut_array = np.array(list(mut_probs.values()))
cos_sim = 1 - cosine(orig_array, mut_array)
return js_distance, cos_sim
except Exception as e:
print(f"Error calculating distances: {e}")
return 0.0, 1.0
def load_bias_dictionary():
"""Load bias terms from the bias dictionary files"""
bias_terms = set()
bias_dir = "data/bias"
try:
for category in ["gender", "age", "race"]:
file_path = os.path.join(bias_dir, category, f"{category}_terms.csv")
if os.path.exists(file_path):
df = pd.read_csv(file_path)
# Assuming the CSV has a column with bias terms
if 'term' in df.columns:
bias_terms.update(df['term'].str.lower().tolist())
elif len(df.columns) > 0:
# Use first column if 'term' column doesn't exist
bias_terms.update(df.iloc[:, 0].str.lower().tolist())
except Exception as e:
print(f"[v0] Error loading bias dictionary: {e}")
# Add some common bias terms as fallback
bias_terms.update(['people', 'person', 'man', 'woman', 'male', 'female', 'young', 'old', 'white', 'black', 'asian', 'hispanic', 'russian', 'american', 'european'])
return bias_terms
def find_bias_tokens_in_sentence(sentence, bias_dictionary):
"""Find bias tokens present in a sentence"""
words = sentence.lower().split()
bias_tokens_found = {}
for i, word in enumerate(words):
# Clean word of punctuation
clean_word = word.strip('.,!?;:"()[]{}')
if clean_word in bias_dictionary:
bias_tokens_found[clean_word] = {
'position': i,
'original_word': word
}
return bias_tokens_found
def calculate_shapley_values(original_text, atomic1_text, atomic2_text, intersectional_text, model_name):
"""Calculate SHAP values for bias tokens using BiasAnalyzer and show rank changes"""
try:
print(f"[v0] Starting SHAP calculation for model: {model_name}")
analyzer = model_manager.get_bias_analyzer(model_name)
print(f"[v0] BiasAnalyzer created successfully")
sentences = {
'original': original_text,
'atomic1': atomic1_text,
'atomic2': atomic2_text,
'intersectional': intersectional_text
}
sentence_results = {}
for sentence_type, sentence_text in sentences.items():
try:
print(f"[v0] Analyzing {sentence_type}: {sentence_text}")
result = analyzer.analyze_sentence(
sentence_text,
sampling_ratio=0.1,
max_combinations=50
)
sentence_results[sentence_type] = result
print(f"[v0] {sentence_type} analysis completed")
except Exception as e:
print(f"[v0] Error analyzing {sentence_type}: {e}")
sentence_results[sentence_type] = {'Bias Token Ranks': {}}
print(f"[v0] SHAP analysis completed successfully")
return {
"sentence_results": sentence_results
}
except Exception as e:
print(f"[v0] Error calculating SHAP: {e}")
import traceback
print(f"[v0] Full traceback: {traceback.format_exc()}")
return {
"error": str(e)
}
def run_bias_detection(dataset_name, sentence_display, model_name, show_distances, show_shapley):
"""Main function to run bias detection analysis"""
try:
sentences = data_manager.get_dataset_sentences(dataset_name)
sentence_index = sentences.index(sentence_display)
sentence_data = data_manager.get_sentence_data(dataset_name, sentence_index)
# Get the actual sentence variations from the data
original_sentence = sentence_data["original"]
atomic1_sentence = sentence_data["mutant_1"] # Changed from "atomic_1" to "mutant_1"
atomic2_sentence = sentence_data["mutant_2"] # Changed from "atomic_2" to "mutant_2"
intersectional_sentence = sentence_data["intersectional"]
except Exception as e:
print(f"[v0] Error parsing sentence selection: {e}")
return f"Error: Could not parse sentence selection - {str(e)}"
# Load model
model, tokenizer = load_model(model_name)
mutations = {
"original": original_sentence,
"atomic_1": atomic1_sentence,
"atomic_2": atomic2_sentence,
"intersectional": intersectional_sentence
}
# Get predictions for all variations
orig_pred = get_sentiment_prediction(mutations["original"], model, tokenizer)
atomic1_pred = get_sentiment_prediction(mutations["atomic_1"], model, tokenizer)
atomic2_pred = get_sentiment_prediction(mutations["atomic_2"], model, tokenizer)
intersectional_pred = get_sentiment_prediction(mutations["intersectional"], model, tokenizer)
atomic1_bias = orig_pred["label"] != atomic1_pred["label"]
atomic2_bias = orig_pred["label"] != atomic2_pred["label"]
intersectional_bias = orig_pred["label"] != intersectional_pred["label"]
bias_detected = atomic1_bias or atomic2_bias or intersectional_bias
results = f"""# π¬ Bias Detection Analysis
**Model:** {model_name} | **Dataset:** {dataset_name}
---
## π Sentence Variations
### πΈ Original Sentence
> {mutations["original"]}
**Prediction:** `{orig_pred["label"].upper()}` | **Probabilities:** {format_probabilities(orig_pred["probabilities"])}
### πΈ Atomic Mutation 1
> {mutations["atomic_1"]}
**Prediction:** `{atomic1_pred["label"].upper()}` | **Probabilities:** {format_probabilities(atomic1_pred["probabilities"])}
### πΈ Atomic Mutation 2
> {mutations["atomic_2"]}
**Prediction:** `{atomic2_pred["label"].upper()}` | **Probabilities:** {format_probabilities(atomic2_pred["probabilities"])}
### πΈ Intersectional Mutation
> {mutations["intersectional"]}
**Prediction:** `{intersectional_pred["label"].upper()}` | **Probabilities:** {format_probabilities(intersectional_pred["probabilities"])}
---
## π― Bias Detection Results
### {"β οΈ BIAS DETECTED" if bias_detected else "β
NO BIAS DETECTED"}
**π Atomic Bias 1:** {"π¨ DETECTED" if atomic1_bias else "β
NOT DETECTED"}
*Original: {orig_pred["label"]} β Mutated: {atomic1_pred["label"]}*
**π Atomic Bias 2:** {"π¨ DETECTED" if atomic2_bias else "β
NOT DETECTED"}
*Original: {orig_pred["label"]} β Mutated: {atomic2_pred["label"]}*
**π Intersectional Bias:** {"π¨ DETECTED" if intersectional_bias else "β
NOT DETECTED"}
*Original: {orig_pred["label"]} β Mutated: {intersectional_pred["label"]}*
"""
if show_distances:
js1, cos1 = calculate_distances(orig_pred["probabilities"], atomic1_pred["probabilities"])
js2, cos2 = calculate_distances(orig_pred["probabilities"], atomic2_pred["probabilities"])
js3, cos3 = calculate_distances(orig_pred["probabilities"], intersectional_pred["probabilities"])
results += f"""---
## π Distance Metrics Analysis
### πΈ Atomic Mutation 1
**Jensen-Shannon Distance:** `{js1:.6f}` | **Cosine Similarity:** `{cos1:.6f}`
### πΈ Atomic Mutation 2
**Jensen-Shannon Distance:** `{js2:.6f}` | **Cosine Similarity:** `{cos2:.6f}`
### πΈ Intersectional Mutation
**Jensen-Shannon Distance:** `{js3:.6f}` | **Cosine Similarity:** `{cos3:.6f}`
"""
if show_shapley:
try:
shap_data = calculate_shapley_values(
mutations["original"],
mutations["atomic_1"],
mutations["atomic_2"],
mutations["intersectional"],
model_name
)
if "error" in shap_data:
results += f"""---
## π― SHAP Values Analysis
*SHAP calculation failed: {shap_data["error"]}*
*This feature requires significant computational resources.*
"""
else:
results += f"""---
## π― SHAP Values Analysis - Bias Tokens Only
"""
def format_bias_tokens_from_analyzer(sentence_results, sentence_type, title):
result = f"### πΈ {title}\n\n"
# Get bias token ranks from BiasAnalyzer results
bias_token_ranks = sentence_results.get(sentence_type, {}).get('Bias Token Ranks', {})
if not bias_token_ranks:
return result + "*No bias tokens detected*\n\n"
for token, token_data in bias_token_ranks.items():
shap_val = token_data.get('shapley_value', 0.0)
rank = token_data.get('rank', 'N/A')
percentile = token_data.get('percentile', 'N/A')
token_type = token_data.get('type', 'single_word')
importance_level = "π΄ HIGH" if abs(shap_val) > 0.1 else "π‘ MED" if abs(shap_val) > 0.05 else "π’ LOW"
result += f"**{token}** | `{shap_val:.3f}` | {importance_level} | *rank: {rank} ({percentile}%) | type: {token_type}*\n\n"
return result
sentence_results = shap_data.get("sentence_results", {})
results += format_bias_tokens_from_analyzer(sentence_results, 'original', "Original Sentence Bias Tokens")
results += format_bias_tokens_from_analyzer(sentence_results, 'atomic1', "Atomic Mutation 1 Bias Tokens")
results += format_bias_tokens_from_analyzer(sentence_results, 'atomic2', "Atomic Mutation 2 Bias Tokens")
results += format_bias_tokens_from_analyzer(sentence_results, 'intersectional', "Intersectional Mutation Bias Tokens")
results += "### πΈ Bias Token Rank Changes by Mutation Words\n\n"
# Get mutation word information from sentence data
word1 = sentence_data.get("word_1", "Word 1")
replacement1 = sentence_data.get("replacement_1", "Replacement 1")
word2 = sentence_data.get("word_2", "Word 2")
replacement2 = sentence_data.get("replacement_2", "Replacement 2")
original_ranks = sentence_results.get('original', {}).get('Bias Token Ranks', {})
atomic1_ranks = sentence_results.get('atomic1', {}).get('Bias Token Ranks', {})
atomic2_ranks = sentence_results.get('atomic2', {}).get('Bias Token Ranks', {})
intersectional_ranks = sentence_results.get('intersectional', {}).get('Bias Token Ranks', {})
# Track rank changes for mutation words
mutation_changes_found = False
# Check Word 1 -> Replacement 1 (Atomic Mutation 1)
results += f"**Word 1 ({word1} β {replacement1}):**\n\n"
replacement1_lower = replacement1.lower()
word1_lower = word1.lower()
# Check if replacement word appears in atomic1 mutation
replacement1_found = False
for token, token_data in atomic1_ranks.items():
if token.lower() == replacement1_lower:
atomic1_rank = token_data['rank']
# Check if original word was in original sentence
original_word_found = False
for orig_token, orig_data in original_ranks.items():
if orig_token.lower() == word1_lower:
orig_rank = orig_data['rank']
rank_diff = atomic1_rank - orig_rank
change_indicator = "π" if rank_diff < 0 else "π" if rank_diff > 0 else "β‘οΈ"
results += f"- **{replacement1}**: {orig_rank} β {atomic1_rank} {change_indicator}\n\n"
mutation_changes_found = True
original_word_found = True
replacement1_found = True
break
if not original_word_found:
results += f"- **{replacement1}**: New bias token (rank: {atomic1_rank})\n\n"
mutation_changes_found = True
replacement1_found = True
break
if not replacement1_found:
# Check if replacement word might be detected under different tokenization
for token, token_data in atomic1_ranks.items():
if replacement1_lower in token.lower() or token.lower() in replacement1_lower:
atomic1_rank = token_data['rank']
original_word_found = False
for orig_token, orig_data in original_ranks.items():
if orig_token.lower() == word1_lower:
orig_rank = orig_data['rank']
rank_diff = atomic1_rank - orig_rank
change_indicator = "π" if rank_diff < 0 else "π" if rank_diff > 0 else "β‘οΈ"
results += f"- **{token}** (from {replacement1}): {orig_rank} β {atomic1_rank} {change_indicator}\n\n"
mutation_changes_found = True
original_word_found = True
replacement1_found = True
break
if not original_word_found:
results += f"- **{token}** (from {replacement1}): New bias token (rank: {atomic1_rank})\n\n"
mutation_changes_found = True
replacement1_found = True
break
if not replacement1_found:
results += f"- **{replacement1}**: Not detected as bias token\n\n"
# Check Word 2 -> Replacement 2 (Atomic Mutation 2)
results += f"**Word 2 ({word2} β {replacement2}):**\n\n"
replacement2_lower = replacement2.lower()
word2_lower = word2.lower()
replacement2_found = False
for token, token_data in atomic2_ranks.items():
if token.lower() == replacement2_lower:
atomic2_rank = token_data['rank']
# Check if original word was in original sentence
original_word_found = False
for orig_token, orig_data in original_ranks.items():
if orig_token.lower() == word2_lower:
orig_rank = orig_data['rank']
rank_diff = atomic2_rank - orig_rank
change_indicator = "π" if rank_diff < 0 else "π" if rank_diff > 0 else "β‘οΈ"
results += f"- **{replacement2}**: {orig_rank} β {atomic2_rank} {change_indicator}\n\n"
mutation_changes_found = True
original_word_found = True
replacement2_found = True
break
if not original_word_found:
results += f"- **{replacement2}**: New bias token (rank: {atomic2_rank})\n\n"
mutation_changes_found = True
replacement2_found = True
break
if not replacement2_found:
# Check if replacement word might be detected under different tokenization
for token, token_data in atomic2_ranks.items():
if replacement2_lower in token.lower() or token.lower() in replacement2_lower:
atomic2_rank = token_data['rank']
original_word_found = False
for orig_token, orig_data in original_ranks.items():
if orig_token.lower() == word2_lower:
orig_rank = orig_data['rank']
rank_diff = atomic2_rank - orig_rank
change_indicator = "π" if rank_diff < 0 else "π" if rank_diff > 0 else "β‘οΈ"
results += f"- **{token}** (from {replacement2}): {orig_rank} β {atomic2_rank} {change_indicator} (Ξ{rank_diff:+d})\n\n"
mutation_changes_found = True
original_word_found = True
replacement2_found = True
break
if not original_word_found:
results += f"- **{token}** (from {replacement2}): New bias token (rank: {atomic2_rank})\n\n"
mutation_changes_found = True
replacement2_found = True
break
if not replacement2_found:
results += f"- **{replacement2}**: Not detected as bias token\n\n"
# Check Intersectional changes
results += f"**Intersectional Mutation ({word1}β{replacement1} + {word2}β{replacement2}):**\n\n"
intersectional_changes_found = False
replacement1_intersectional_found = False
for token, token_data in intersectional_ranks.items():
if token.lower() == replacement1_lower:
intersectional_rank = token_data['rank']
original_word_found = False
for orig_token, orig_data in original_ranks.items():
if orig_token.lower() == word1_lower:
orig_rank = orig_data['rank']
rank_diff = intersectional_rank - orig_rank
change_indicator = "π" if rank_diff < 0 else "π" if rank_diff > 0 else "β‘οΈ"
results += f"- **{replacement1}**: {orig_rank} β {intersectional_rank} {change_indicator} (Ξ{rank_diff:+d})\n"
intersectional_changes_found = True
original_word_found = True
replacement1_intersectional_found = True
break
if not original_word_found:
results += f"- **{replacement1}**: New bias token (rank: {intersectional_rank})\n"
intersectional_changes_found = True
replacement1_intersectional_found = True
break
if not replacement1_intersectional_found:
# Check partial matches for replacement 1
for token, token_data in intersectional_ranks.items():
if replacement1_lower in token.lower() or token.lower() in replacement1_lower:
intersectional_rank = token_data['rank']
original_word_found = False
for orig_token, orig_data in original_ranks.items():
if orig_token.lower() == word1_lower:
orig_rank = orig_data['rank']
rank_diff = intersectional_rank - orig_rank
change_indicator = "π" if rank_diff < 0 else "π" if rank_diff > 0 else "β‘οΈ"
results += f"- **{token}** (from {replacement1}): {orig_rank} β {intersectional_rank} {change_indicator} (Ξ{rank_diff:+d})\n"
intersectional_changes_found = True
original_word_found = True
replacement1_intersectional_found = True
break
if not original_word_found:
results += f"- **{token}** (from {replacement1}): New bias token (rank: {intersectional_rank})\n"
intersectional_changes_found = True
replacement1_intersectional_found = True
break
replacement2_intersectional_found = False
for token, token_data in intersectional_ranks.items():
if token.lower() == replacement2_lower:
intersectional_rank = token_data['rank']
original_word_found = False
for orig_token, orig_data in original_ranks.items():
if orig_token.lower() == word2_lower:
orig_rank = orig_data['rank']
rank_diff = intersectional_rank - orig_rank
change_indicator = "π" if rank_diff < 0 else "π" if rank_diff > 0 else "β‘οΈ"
results += f"- **{replacement2}**: {orig_rank} β {intersectional_rank} {change_indicator} (Ξ{rank_diff:+d})\n"
intersectional_changes_found = True
original_word_found = True
replacement2_intersectional_found = True
break
if not original_word_found:
results += f"- **{replacement2}**: New bias token (rank: {intersectional_rank})\n"
intersectional_changes_found = True
replacement2_intersectional_found = True
break
if not replacement2_intersectional_found:
# Check partial matches for replacement 2
for token, token_data in intersectional_ranks.items():
if replacement2_lower in token.lower() or token.lower() in replacement2_lower:
intersectional_rank = token_data['rank']
original_word_found = False
for orig_token, orig_data in original_ranks.items():
if orig_token.lower() == word2_lower:
orig_rank = orig_data['rank']
rank_diff = intersectional_rank - orig_rank
change_indicator = "π" if rank_diff < 0 else "π" if rank_diff > 0 else "β‘οΈ"
results += f"- **{token}** (from {replacement2}): {orig_rank} β {intersectional_rank} {change_indicator} (Ξ{rank_diff:+d})\n"
intersectional_changes_found = True
original_word_found = True
replacement2_intersectional_found = True
break
if not original_word_found:
results += f"- **{token}** (from {replacement2}): New bias token (rank: {intersectional_rank})\n"
intersectional_changes_found = True
replacement2_intersectional_found = True
break
if not intersectional_changes_found:
results += "*No bias tokens detected for intersectional mutation words*\n"
if not mutation_changes_found and not intersectional_changes_found:
results += "*No bias tokens detected for mutation words*\n"
except Exception as e:
results += f"""---
## π― SHAP Values Analysis
*SHAP calculation failed: {str(e)}*
*This feature requires significant computational resources.*
"""
return results
def format_probabilities(probs_dict):
"""Format probability dictionary for display"""
return " | ".join([f"{k}: {v:.6f}" for k, v in probs_dict.items()])
def update_sentences(dataset_name):
"""Update sentence dropdown based on selected dataset"""
try:
sentences = data_manager.get_dataset_sentences(dataset_name)
return gr.Dropdown(choices=sentences, value=sentences[0] if sentences else None)
except Exception as e:
print(f"[v0] Error updating sentences: {e}")
return gr.Dropdown(choices=[], value=None)
# Initialize datasets
load_datasets()
# Create Gradio interface
with gr.Blocks(title="Bias Detection Framework", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π¬ Financial Bias Detection Framework")
gr.Markdown("Demo interface for detecting bias in financial sentiment analysis models")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## βοΈ Configuration")
dataset_dropdown = gr.Dropdown(
choices=["FPB", "FinSen"],
label="π Select Dataset",
value="FPB"
)
sentence_dropdown = gr.Dropdown(
choices=[],
label="π Select Sentence",
interactive=True
)
model_dropdown = gr.Dropdown(
choices=list(model_manager.model_configs.keys()),
label="π€ Select Model",
value="FinBERT"
)
show_distances = gr.Checkbox(
label="π Show Original to Mutated Distances",
value=False
)
show_shapley = gr.Checkbox(
label="π― Show SHAP Values",
value=False
)
analyze_btn = gr.Button("π Run Bias Analysis", variant="primary")
with gr.Column(scale=2):
gr.Markdown("## π Results")
results_output = gr.Markdown("")
# Event handlers
dataset_dropdown.change(
fn=update_sentences,
inputs=[dataset_dropdown],
outputs=[sentence_dropdown]
)
analyze_btn.click(
fn=run_bias_detection,
inputs=[dataset_dropdown, sentence_dropdown, model_dropdown, show_distances, show_shapley],
outputs=[results_output]
)
# Initialize sentence dropdown
demo.load(
fn=update_sentences,
inputs=[dataset_dropdown],
outputs=[sentence_dropdown]
)
if __name__ == "__main__":
demo.launch()
|