Spaces:
Running
on
Zero
Running
on
Zero
| from .imagefunc import * | |
| NODE_NAME = 'ChannelShake' | |
| class ChannelShake: | |
| def __init__(self): | |
| pass | |
| def INPUT_TYPES(self): | |
| channel_mode = ['RGB', 'RBG', 'BGR', 'BRG', 'GBR', 'GRB'] | |
| return { | |
| "required": { | |
| "image": ("IMAGE", ), # | |
| "distance": ("INT", {"default": 20, "min": 1, "max": 999, "step": 1}), # 距离 | |
| "angle": ("FLOAT", {"default": 40, "min": -360, "max": 360, "step": 0.1}), # 角度 | |
| "mode": (channel_mode,), # 模式 | |
| }, | |
| "optional": { | |
| } | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| RETURN_NAMES = ("image",) | |
| FUNCTION = 'channel_shake' | |
| CATEGORY = '😺dzNodes/LayerFilter' | |
| def channel_shake(self, image, distance, angle, mode, ): | |
| ret_images = [] | |
| for i in image: | |
| i = torch.unsqueeze(i, 0) | |
| _canvas = tensor2pil(i).convert('RGB') | |
| R, G, B = _canvas.split() | |
| x = int(math.cos(angle) * distance) | |
| y = int(math.sin(angle) * distance) | |
| if mode.startswith('R'): | |
| R = shift_image(R.convert('RGB'), -x, -y).convert('L') | |
| if mode.startswith('G'): | |
| G = shift_image(G.convert('RGB'), -x, -y).convert('L') | |
| if mode.startswith('B'): | |
| B = shift_image(B.convert('RGB'), -x, -y).convert('L') | |
| if mode.endswith('R'): | |
| R = shift_image(R.convert('RGB'), x, y).convert('L') | |
| if mode.endswith('G'): | |
| G = shift_image(G.convert('RGB'), x, y).convert('L') | |
| if mode.endswith('B'): | |
| B = shift_image(B.convert('RGB'), x, y).convert('L') | |
| ret_image = Image.merge('RGB', [R, G, B]) | |
| ret_images.append(pil2tensor(ret_image)) | |
| log(f"{NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish') | |
| return (torch.cat(ret_images, dim=0),) | |
| NODE_CLASS_MAPPINGS = { | |
| "LayerFilter: ChannelShake": ChannelShake | |
| } | |
| NODE_DISPLAY_NAME_MAPPINGS = { | |
| "LayerFilter: ChannelShake": "LayerFilter: ChannelShake" | |
| } |