Spaces:
Running
on
Zero
Running
on
Zero
| import hashlib | |
| import os | |
| import torch | |
| import nodes | |
| import server | |
| import folder_paths | |
| import numpy as np | |
| from typing import Iterable | |
| from PIL import Image | |
| BIGMIN = -(2**53-1) | |
| BIGMAX = (2**53-1) | |
| DIMMAX = 8192 | |
| def tensor_to_int(tensor, bits): | |
| #TODO: investigate benefit of rounding by adding 0.5 before clip/cast | |
| tensor = tensor.cpu().numpy() * (2**bits-1) | |
| return np.clip(tensor, 0, (2**bits-1)) | |
| def tensor_to_shorts(tensor): | |
| return tensor_to_int(tensor, 16).astype(np.uint16) | |
| def tensor_to_bytes(tensor): | |
| return tensor_to_int(tensor, 8).astype(np.uint8) | |
| def tensor2pil(x): | |
| return Image.fromarray(np.clip(255. * x.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) | |
| def pil2tensor(image: Image.Image) -> torch.Tensor: | |
| return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0) | |
| def is_url(url): | |
| return url.split("://")[0] in ["http", "https"] | |
| def strip_path(path): | |
| #This leaves whitespace inside quotes and only a single " | |
| #thus ' ""test"' -> '"test' | |
| #consider path.strip(string.whitespace+"\"") | |
| #or weightier re.fullmatch("[\\s\"]*(.+?)[\\s\"]*", path).group(1) | |
| path = path.strip() | |
| if path.startswith("\""): | |
| path = path[1:] | |
| if path.endswith("\""): | |
| path = path[:-1] | |
| return path | |
| def hash_path(path): | |
| if path is None: | |
| return "input" | |
| if is_url(path): | |
| return "url" | |
| return calculate_file_hash(strip_path(path)) | |
| # modified from https://stackoverflow.com/questions/22058048/hashing-a-file-in-python | |
| def calculate_file_hash(filename: str, hash_every_n: int = 1): | |
| #Larger video files were taking >.5 seconds to hash even when cached, | |
| #so instead the modified time from the filesystem is used as a hash | |
| h = hashlib.sha256() | |
| h.update(filename.encode()) | |
| h.update(str(os.path.getmtime(filename)).encode()) | |
| return h.hexdigest() | |
| def is_safe_path(path): | |
| if "VHS_STRICT_PATHS" not in os.environ: | |
| return True | |
| basedir = os.path.abspath('.') | |
| try: | |
| common_path = os.path.commonpath([basedir, path]) | |
| except: | |
| #Different drive on windows | |
| return False | |
| return common_path == basedir | |
| def validate_path(path, allow_none=False, allow_url=True): | |
| if path is None: | |
| return allow_none | |
| if is_url(path): | |
| #Probably not feasible to check if url resolves here | |
| if not allow_url: | |
| return "URLs are unsupported for this path" | |
| return is_safe_path(path) | |
| if not os.path.isfile(strip_path(path)): | |
| return "Invalid file path: {}".format(path) | |
| return is_safe_path(path) | |
| def common_annotator_call(model, tensor_image, input_batch=False, show_pbar=False, **kwargs): | |
| if "detect_resolution" in kwargs: | |
| del kwargs["detect_resolution"] #Prevent weird case? | |
| if "resolution" in kwargs: | |
| detect_resolution = kwargs["resolution"] if type(kwargs["resolution"]) == int and kwargs["resolution"] >= 64 else 512 | |
| del kwargs["resolution"] | |
| else: | |
| detect_resolution = 512 | |
| if input_batch: | |
| np_images = np.asarray(tensor_image * 255., dtype=np.uint8) | |
| np_results = model(np_images, output_type="np", detect_resolution=detect_resolution, **kwargs) | |
| return torch.from_numpy(np_results.astype(np.float32) / 255.0) | |
| batch_size = tensor_image.shape[0] | |
| out_tensor = None | |
| for i, image in enumerate(tensor_image): | |
| np_image = np.asarray(image.cpu() * 255., dtype=np.uint8) | |
| np_result = model(np_image, output_type="np", detect_resolution=detect_resolution, **kwargs) | |
| out = torch.from_numpy(np_result.astype(np.float32) / 255.0) | |
| if out_tensor is None: | |
| out_tensor = torch.zeros(batch_size, *out.shape, dtype=torch.float32) | |
| out_tensor[i] = out | |
| return out_tensor | |
| def create_node_input_types(**extra_kwargs): | |
| return { | |
| "required": { | |
| "image": ("IMAGE",) | |
| }, | |
| "optional": { | |
| **extra_kwargs, | |
| "resolution": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 64}) | |
| } | |
| } | |
| prompt_queue = server.PromptServer.instance.prompt_queue | |
| def requeue_workflow_unchecked(): | |
| """Requeues the current workflow without checking for multiple requeues""" | |
| currently_running = prompt_queue.currently_running | |
| print(f'requeue_workflow_unchecked >>>>>> ') | |
| (_, _, prompt, extra_data, outputs_to_execute) = next(iter(currently_running.values())) | |
| #Ensure batch_managers are marked stale | |
| prompt = prompt.copy() | |
| for uid in prompt: | |
| if prompt[uid]['class_type'] == 'BatchManager': | |
| prompt[uid]['inputs']['requeue'] = prompt[uid]['inputs'].get('requeue',0)+1 | |
| #execution.py has guards for concurrency, but server doesn't. | |
| #TODO: Check that this won't be an issue | |
| number = -server.PromptServer.instance.number | |
| server.PromptServer.instance.number += 1 | |
| prompt_id = str(server.uuid.uuid4()) | |
| prompt_queue.put((number, prompt_id, prompt, extra_data, outputs_to_execute)) | |
| print(f'requeue_workflow_unchecked <<<<<<<<<< prompt_id:{prompt_id}, number:{number}') | |
| requeue_guard = [None, 0, 0, {}] | |
| def requeue_workflow(requeue_required=(-1,True)): | |
| assert(len(prompt_queue.currently_running) == 1) | |
| global requeue_guard | |
| (run_number, _, prompt, _, _) = next(iter(prompt_queue.currently_running.values())) | |
| print(f'requeue_workflow >> run_number:{run_number}\n') | |
| if requeue_guard[0] != run_number: | |
| #Calculate a count of how many outputs are managed by a batch manager | |
| managed_outputs=0 | |
| for bm_uid in prompt: | |
| if prompt[bm_uid]['class_type'] == 'BatchManager': | |
| for output_uid in prompt: | |
| if prompt[output_uid]['class_type'] in ["VideoSaver"]: | |
| for inp in prompt[output_uid]['inputs'].values(): | |
| if inp == [bm_uid, 0]: | |
| managed_outputs+=1 | |
| requeue_guard = [run_number, 0, managed_outputs, {}] | |
| requeue_guard[1] = requeue_guard[1]+1 | |
| requeue_guard[3][requeue_required[0]] = requeue_required[1] | |
| if requeue_guard[1] == requeue_guard[2] and max(requeue_guard[3].values()): | |
| requeue_workflow_unchecked() | |