Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,195 +12,31 @@ import logging
|
|
| 12 |
from typing import List, Tuple
|
| 13 |
from dataclasses import dataclass
|
| 14 |
from datetime import datetime
|
| 15 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 16 |
from langchain_huggingface.llms import HuggingFacePipeline
|
| 17 |
import spaces
|
| 18 |
|
|
|
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
logging.basicConfig(level=logging.INFO)
|
| 22 |
-
logger = logging.getLogger(__name__)
|
| 23 |
-
|
| 24 |
-
@dataclass
|
| 25 |
-
class Message:
|
| 26 |
-
role: str
|
| 27 |
-
content: str
|
| 28 |
-
timestamp: str
|
| 29 |
-
|
| 30 |
-
class ChatHistory:
|
| 31 |
-
def __init__(self):
|
| 32 |
-
self.messages: List[Message] = []
|
| 33 |
-
|
| 34 |
-
def add_message(self, role: str, content: str):
|
| 35 |
-
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 36 |
-
self.messages.append(Message(role=role, content=content, timestamp=timestamp))
|
| 37 |
-
|
| 38 |
-
def get_formatted_history(self, max_messages: int = 5) -> str:
|
| 39 |
-
"""Returns the most recent conversation history formatted as a string"""
|
| 40 |
-
recent_messages = self.messages[-max_messages:] if len(self.messages) > max_messages else self.messages
|
| 41 |
-
formatted_history = "\n".join([
|
| 42 |
-
f"{msg.role}: {msg.content}" for msg in recent_messages
|
| 43 |
-
])
|
| 44 |
-
return formatted_history
|
| 45 |
-
|
| 46 |
-
def clear(self):
|
| 47 |
-
self.messages = []
|
| 48 |
-
|
| 49 |
-
# Load environment variables
|
| 50 |
-
load_dotenv()
|
| 51 |
-
|
| 52 |
-
# HuggingFace API Token
|
| 53 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 54 |
-
if not HF_TOKEN:
|
| 55 |
-
logger.error("HF_TOKEN is not set in the environment variables.")
|
| 56 |
-
exit(1)
|
| 57 |
-
|
| 58 |
-
# HuggingFace Embeddings
|
| 59 |
-
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
|
| 60 |
-
|
| 61 |
-
# Qdrant Client Setup
|
| 62 |
-
try:
|
| 63 |
-
client = QdrantClient(
|
| 64 |
-
url=os.getenv("QDRANT_URL"),
|
| 65 |
-
api_key=os.getenv("QDRANT_API_KEY"),
|
| 66 |
-
prefer_grpc=True
|
| 67 |
-
)
|
| 68 |
-
except Exception as e:
|
| 69 |
-
logger.error("Failed to connect to Qdrant. Ensure QDRANT_URL and QDRANT_API_KEY are correctly set.")
|
| 70 |
-
exit(1)
|
| 71 |
-
|
| 72 |
-
# Define collection name
|
| 73 |
-
collection_name = "mawared"
|
| 74 |
-
|
| 75 |
-
# Try to create collection
|
| 76 |
-
try:
|
| 77 |
-
client.create_collection(
|
| 78 |
-
collection_name=collection_name,
|
| 79 |
-
vectors_config=models.VectorParams(
|
| 80 |
-
size=768, # GTE-large embedding size
|
| 81 |
-
distance=models.Distance.COSINE
|
| 82 |
-
)
|
| 83 |
-
)
|
| 84 |
-
logger.info(f"Created new collection: {collection_name}")
|
| 85 |
-
except Exception as e:
|
| 86 |
-
if "already exists" in str(e):
|
| 87 |
-
logger.info(f"Collection {collection_name} already exists, continuing...")
|
| 88 |
-
else:
|
| 89 |
-
logger.error(f"Error creating collection: {e}")
|
| 90 |
-
exit(1)
|
| 91 |
-
|
| 92 |
-
# Create Qdrant vector store
|
| 93 |
-
db = Qdrant(
|
| 94 |
-
client=client,
|
| 95 |
-
collection_name=collection_name,
|
| 96 |
-
embeddings=embeddings,
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
# Create retriever
|
| 100 |
-
retriever = db.as_retriever(
|
| 101 |
-
search_type="similarity",
|
| 102 |
-
search_kwargs={"k": 5}
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
# Load model directly
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
# Set up the LLM
|
| 111 |
-
llm = ChatOpenAI(
|
| 112 |
-
base_url="https://api-inference.huggingface.co/v1/",
|
| 113 |
-
temperature=0,
|
| 114 |
-
api_key=HF_TOKEN,
|
| 115 |
-
model="meta-llama/Llama-3.3-70B-Instruct",
|
| 116 |
-
max_tokens=None,
|
| 117 |
-
timeout=None
|
| 118 |
-
|
| 119 |
-
)
|
| 120 |
-
|
| 121 |
-
# Create prompt template with chat history
|
| 122 |
-
template = """
|
| 123 |
-
You are an expert assistant specializing in the Mawared HR System.
|
| 124 |
-
Your task is to provide accurate and contextually relevant answers based on the provided context and chat history.
|
| 125 |
-
If you need more information, ask targeted clarifying questions.
|
| 126 |
-
Ensure you provide detailed Numbered step by step to the user and be very accurate.
|
| 127 |
-
Previous Conversation:
|
| 128 |
-
{chat_history}
|
| 129 |
-
Current Context:
|
| 130 |
-
{context}
|
| 131 |
-
Current Question:
|
| 132 |
-
{question}
|
| 133 |
-
Ask followup questions based on your provided asnwer to create a conversational flow, Only answer form the provided context and chat history , dont make up any information.
|
| 134 |
-
answer only and only from the given context and knowledgebase.
|
| 135 |
-
Answer:
|
| 136 |
-
"""
|
| 137 |
-
|
| 138 |
-
prompt = ChatPromptTemplate.from_template(template)
|
| 139 |
-
|
| 140 |
-
# Create the RAG chain with chat history
|
| 141 |
-
def create_rag_chain(chat_history: str):
|
| 142 |
-
chain = (
|
| 143 |
-
{
|
| 144 |
-
"context": retriever,
|
| 145 |
-
"question": RunnablePassthrough(),
|
| 146 |
-
"chat_history": lambda x: chat_history
|
| 147 |
-
}
|
| 148 |
-
| prompt
|
| 149 |
-
| llm
|
| 150 |
-
| StrOutputParser()
|
| 151 |
-
)
|
| 152 |
-
return chain
|
| 153 |
-
|
| 154 |
-
# Initialize chat history
|
| 155 |
-
chat_history = ChatHistory()
|
| 156 |
-
|
| 157 |
-
# Gradio Function
|
| 158 |
-
|
| 159 |
-
def ask_question_gradio(question, history):
|
| 160 |
-
try:
|
| 161 |
-
# Add user question to chat history
|
| 162 |
-
chat_history.add_message("user", question)
|
| 163 |
-
|
| 164 |
-
# Get formatted history
|
| 165 |
-
formatted_history = chat_history.get_formatted_history()
|
| 166 |
-
|
| 167 |
-
# Create chain with current chat history
|
| 168 |
-
rag_chain = create_rag_chain(formatted_history)
|
| 169 |
-
|
| 170 |
-
# Generate response
|
| 171 |
-
response = ""
|
| 172 |
-
for chunk in rag_chain.stream(question):
|
| 173 |
-
response += chunk
|
| 174 |
-
|
| 175 |
-
# Add assistant response to chat history
|
| 176 |
-
chat_history.add_message("assistant", response)
|
| 177 |
-
|
| 178 |
-
# Update Gradio chat history
|
| 179 |
-
history.append({"role": "user", "content": question})
|
| 180 |
-
history.append({"role": "assistant", "content": response})
|
| 181 |
-
|
| 182 |
-
return "", history
|
| 183 |
-
except Exception as e:
|
| 184 |
-
logger.error(f"Error during question processing: {e}")
|
| 185 |
-
return "", history + [{"role": "assistant", "content": "An error occurred. Please try again later."}]
|
| 186 |
-
|
| 187 |
-
def clear_chat():
|
| 188 |
-
chat_history.clear()
|
| 189 |
-
return [], ""
|
| 190 |
-
|
| 191 |
-
# Gradio Interface
|
| 192 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
| 193 |
-
gr.Image("Image.jpg"
|
| 194 |
gr.Markdown("# Mawared HR Assistant")
|
| 195 |
gr.Markdown("Ask questions about the Mawared HR system, and this assistant will provide answers based on the available context and conversation history.")
|
| 196 |
-
|
| 197 |
-
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
with gr.Row():
|
| 206 |
question_input = gr.Textbox(
|
|
@@ -210,6 +46,48 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
| 210 |
)
|
| 211 |
clear_button = gr.Button("Clear Chat", scale=1)
|
| 212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
question_input.submit(
|
| 214 |
ask_question_gradio,
|
| 215 |
inputs=[question_input, chatbot],
|
|
@@ -220,6 +98,31 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
| 220 |
clear_chat,
|
| 221 |
outputs=[chatbot, question_input]
|
| 222 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
# Launch the Gradio App
|
| 225 |
if __name__ == "__main__":
|
|
|
|
| 12 |
from typing import List, Tuple
|
| 13 |
from dataclasses import dataclass
|
| 14 |
from datetime import datetime
|
| 15 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 16 |
from langchain_huggingface.llms import HuggingFacePipeline
|
| 17 |
import spaces
|
| 18 |
|
| 19 |
+
# [Previous imports and configurations remain the same]
|
| 20 |
|
| 21 |
+
# Modified Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
| 23 |
+
gr.Image("Image.jpg", width=1200, height=300, show_label=False, show_download_button=False)
|
| 24 |
gr.Markdown("# Mawared HR Assistant")
|
| 25 |
gr.Markdown("Ask questions about the Mawared HR system, and this assistant will provide answers based on the available context and conversation history.")
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
# Create a state to store the latest assistant response
|
| 28 |
+
latest_response = gr.State("")
|
| 29 |
+
|
| 30 |
+
with gr.Row():
|
| 31 |
+
chatbot = gr.Chatbot(
|
| 32 |
+
height=400,
|
| 33 |
+
show_label=False,
|
| 34 |
+
type="messages"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
with gr.Row():
|
| 38 |
+
# Add copy button next to the response
|
| 39 |
+
copy_button = gr.Button("π Copy Last Response", visible=True)
|
| 40 |
|
| 41 |
with gr.Row():
|
| 42 |
question_input = gr.Textbox(
|
|
|
|
| 46 |
)
|
| 47 |
clear_button = gr.Button("Clear Chat", scale=1)
|
| 48 |
|
| 49 |
+
def copy_last_response(history):
|
| 50 |
+
if history:
|
| 51 |
+
# Find the last assistant message
|
| 52 |
+
for message in reversed(history):
|
| 53 |
+
if message["role"] == "assistant":
|
| 54 |
+
return message["content"]
|
| 55 |
+
return ""
|
| 56 |
+
|
| 57 |
+
# Modified ask_question_gradio function to update the latest response
|
| 58 |
+
def ask_question_gradio(question, history):
|
| 59 |
+
try:
|
| 60 |
+
# Add user question to chat history
|
| 61 |
+
chat_history.add_message("user", question)
|
| 62 |
+
|
| 63 |
+
# Get formatted history
|
| 64 |
+
formatted_history = chat_history.get_formatted_history()
|
| 65 |
+
|
| 66 |
+
# Create chain with current chat history
|
| 67 |
+
rag_chain = create_rag_chain(formatted_history)
|
| 68 |
+
|
| 69 |
+
# Generate response
|
| 70 |
+
response = ""
|
| 71 |
+
for chunk in rag_chain.stream(question):
|
| 72 |
+
response += chunk
|
| 73 |
+
|
| 74 |
+
# Add assistant response to chat history
|
| 75 |
+
chat_history.add_message("assistant", response)
|
| 76 |
+
|
| 77 |
+
# Update Gradio chat history
|
| 78 |
+
history.append({"role": "user", "content": question})
|
| 79 |
+
history.append({"role": "assistant", "content": response})
|
| 80 |
+
|
| 81 |
+
return "", history
|
| 82 |
+
except Exception as e:
|
| 83 |
+
logger.error(f"Error during question processing: {e}")
|
| 84 |
+
return "", history + [{"role": "assistant", "content": "An error occurred. Please try again later."}]
|
| 85 |
+
|
| 86 |
+
def clear_chat():
|
| 87 |
+
chat_history.clear()
|
| 88 |
+
return [], ""
|
| 89 |
+
|
| 90 |
+
# Connect the components
|
| 91 |
question_input.submit(
|
| 92 |
ask_question_gradio,
|
| 93 |
inputs=[question_input, chatbot],
|
|
|
|
| 98 |
clear_chat,
|
| 99 |
outputs=[chatbot, question_input]
|
| 100 |
)
|
| 101 |
+
|
| 102 |
+
# Add copy button functionality
|
| 103 |
+
copy_button.click(
|
| 104 |
+
copy_last_response,
|
| 105 |
+
inputs=[chatbot],
|
| 106 |
+
outputs=[],
|
| 107 |
+
_js="""
|
| 108 |
+
async (response) => {
|
| 109 |
+
await navigator.clipboard.writeText(response);
|
| 110 |
+
// Optional: Show a toast notification
|
| 111 |
+
const toast = document.createElement('div');
|
| 112 |
+
toast.textContent = 'Response copied to clipboard!';
|
| 113 |
+
toast.style.position = 'fixed';
|
| 114 |
+
toast.style.bottom = '20px';
|
| 115 |
+
toast.style.right = '20px';
|
| 116 |
+
toast.style.backgroundColor = '#4CAF50';
|
| 117 |
+
toast.style.color = 'white';
|
| 118 |
+
toast.style.padding = '15px';
|
| 119 |
+
toast.style.borderRadius = '5px';
|
| 120 |
+
toast.style.zIndex = '1000';
|
| 121 |
+
document.body.appendChild(toast);
|
| 122 |
+
setTimeout(() => toast.remove(), 2000);
|
| 123 |
+
}
|
| 124 |
+
"""
|
| 125 |
+
)
|
| 126 |
|
| 127 |
# Launch the Gradio App
|
| 128 |
if __name__ == "__main__":
|