Spaces:
Sleeping
Sleeping
lele
commited on
Commit
·
8fa2bba
1
Parent(s):
2d07852
modified: app.py
Browse filesmodified: requirements.txt
modified: src/ai_infra.py
modified: src/ai_transform.py
- app.py +4 -1
- requirements.txt +2 -1
- src/ai_infra.py +53 -8
- src/ai_transform.py +4 -1
app.py
CHANGED
|
@@ -4,6 +4,7 @@ from src.ai_infra import init_ai_config, get_ai_models
|
|
| 4 |
from src.utils import *
|
| 5 |
import requests, os, datetime
|
| 6 |
import json
|
|
|
|
| 7 |
|
| 8 |
# for offline debugging
|
| 9 |
if os.path.exists("secret.env"):
|
|
@@ -19,7 +20,7 @@ NOTION_TOKEN = os.environ.get("NOTION_TOKEN")
|
|
| 19 |
DB_ID = os.environ.get("DB_ID")
|
| 20 |
|
| 21 |
def get_property(it, task_name, url, api_key, model):
|
| 22 |
-
properties = {
|
| 23 |
"Task name": {
|
| 24 |
"title": [{"text": {"content": task_name}}]
|
| 25 |
}
|
|
@@ -72,6 +73,8 @@ def init_items(items):
|
|
| 72 |
|
| 73 |
@app.route("/", methods=["GET"])
|
| 74 |
def index():
|
|
|
|
|
|
|
| 75 |
return send_from_directory(app.static_folder, "index.html")
|
| 76 |
|
| 77 |
# @app.route('/', methods=['GET'])
|
|
|
|
| 4 |
from src.utils import *
|
| 5 |
import requests, os, datetime
|
| 6 |
import json
|
| 7 |
+
from typing import Any
|
| 8 |
|
| 9 |
# for offline debugging
|
| 10 |
if os.path.exists("secret.env"):
|
|
|
|
| 20 |
DB_ID = os.environ.get("DB_ID")
|
| 21 |
|
| 22 |
def get_property(it, task_name, url, api_key, model):
|
| 23 |
+
properties: dict[str, Any] = {
|
| 24 |
"Task name": {
|
| 25 |
"title": [{"text": {"content": task_name}}]
|
| 26 |
}
|
|
|
|
| 73 |
|
| 74 |
@app.route("/", methods=["GET"])
|
| 75 |
def index():
|
| 76 |
+
if app.static_folder is None:
|
| 77 |
+
raise RuntimeError("Static folder is not configured")
|
| 78 |
return send_from_directory(app.static_folder, "index.html")
|
| 79 |
|
| 80 |
# @app.route('/', methods=['GET'])
|
requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
flask==2.3.3
|
| 2 |
requests==2.31.0
|
| 3 |
python-dotenv
|
| 4 |
-
openai>=0.27.8
|
|
|
|
|
|
| 1 |
flask==2.3.3
|
| 2 |
requests==2.31.0
|
| 3 |
python-dotenv
|
| 4 |
+
openai>=0.27.8
|
| 5 |
+
google-genai==1.50.0
|
src/ai_infra.py
CHANGED
|
@@ -1,8 +1,15 @@
|
|
| 1 |
|
| 2 |
import os
|
| 3 |
from openai import OpenAI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
def chat_completion(question: str, model: str, base_url: str, api_key: str, system_instr: str = None) -> str:
|
| 6 |
'''
|
| 7 |
ai interaction function using OpenAI SDK.
|
| 8 |
Parameters
|
|
@@ -20,21 +27,59 @@ def chat_completion(question: str, model: str, base_url: str, api_key: str, syst
|
|
| 20 |
'''
|
| 21 |
client = OpenAI(api_key=api_key,
|
| 22 |
base_url=base_url)
|
| 23 |
-
messages
|
|
|
|
|
|
|
|
|
|
| 24 |
if system_instr is not None:
|
| 25 |
-
messages.append(
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
})
|
| 29 |
response = client.chat.completions.create(
|
| 30 |
# reasoning_effort="high",
|
| 31 |
model=model,
|
| 32 |
messages=messages
|
| 33 |
)
|
| 34 |
-
content = response.choices[0].message.content
|
| 35 |
print(f"Model: {model}, Base URL: {base_url}\nResponse: {content}\n")
|
| 36 |
return content
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
def init_ai_config(model: str = "default")-> dict[str, str]:
|
| 39 |
'''
|
| 40 |
Initialize configuration for different AI models based on the model name.
|
|
@@ -110,7 +155,7 @@ def init_ai_config(model: str = "default")-> dict[str, str]:
|
|
| 110 |
}
|
| 111 |
API_MODEL = "GPT"
|
| 112 |
# config["api_key"] = "Bearer " + os.environ.get(f"{API_MODEL}_KEY")
|
| 113 |
-
config["api_key"] = os.environ.get(f"{API_MODEL}_KEY")
|
| 114 |
return config
|
| 115 |
|
| 116 |
def get_ai_models() -> list:
|
|
|
|
| 1 |
|
| 2 |
import os
|
| 3 |
from openai import OpenAI
|
| 4 |
+
from openai.types.chat import (
|
| 5 |
+
ChatCompletionUserMessageParam,
|
| 6 |
+
ChatCompletionSystemMessageParam,
|
| 7 |
+
)
|
| 8 |
+
from google import genai
|
| 9 |
+
from typing import Union
|
| 10 |
+
import io
|
| 11 |
|
| 12 |
+
def chat_completion(question: str, model: str, base_url: str, api_key: str, system_instr: str | None = None) -> str:
|
| 13 |
'''
|
| 14 |
ai interaction function using OpenAI SDK.
|
| 15 |
Parameters
|
|
|
|
| 27 |
'''
|
| 28 |
client = OpenAI(api_key=api_key,
|
| 29 |
base_url=base_url)
|
| 30 |
+
messages: list[ChatCompletionUserMessageParam |
|
| 31 |
+
ChatCompletionSystemMessageParam] = [
|
| 32 |
+
ChatCompletionUserMessageParam(role="user", content=question)
|
| 33 |
+
]
|
| 34 |
if system_instr is not None:
|
| 35 |
+
messages.append(
|
| 36 |
+
ChatCompletionSystemMessageParam(role="system", content=system_instr)
|
| 37 |
+
)
|
|
|
|
| 38 |
response = client.chat.completions.create(
|
| 39 |
# reasoning_effort="high",
|
| 40 |
model=model,
|
| 41 |
messages=messages
|
| 42 |
)
|
| 43 |
+
content = response.choices[0].message.content or ""
|
| 44 |
print(f"Model: {model}, Base URL: {base_url}\nResponse: {content}\n")
|
| 45 |
return content
|
| 46 |
|
| 47 |
+
def init_genai_client(api_key: str | None = None) -> genai.Client:
|
| 48 |
+
if not api_key:
|
| 49 |
+
api_key = os.environ.get(f"GEMINI_KEY") or ""
|
| 50 |
+
if not api_key:
|
| 51 |
+
raise ValueError("API key for Gemini is not provided.")
|
| 52 |
+
return genai.Client(api_key=api_key)
|
| 53 |
+
|
| 54 |
+
def interact_with_pdf(client: genai.Client, file: Union[str, os.PathLike[str], io.IOBase], question: str = "") -> str:
|
| 55 |
+
'''
|
| 56 |
+
ai interaction function using Generative SDK to interact with PDF files.
|
| 57 |
+
Parameters
|
| 58 |
+
----------
|
| 59 |
+
file :
|
| 60 |
+
A path to the file or an `IOBase` object to be uploaded. If it's an
|
| 61 |
+
IOBase object, it must be opened in blocking (the default) mode and
|
| 62 |
+
binary mode. In other words, do not use non-blocking mode or text mode.
|
| 63 |
+
The given stream must be seekable, that is, it must be able to call
|
| 64 |
+
`seek()` on 'path'.
|
| 65 |
+
question : str
|
| 66 |
+
The input question or prompt to send to the AI model.
|
| 67 |
+
'''
|
| 68 |
+
|
| 69 |
+
# 上传文件
|
| 70 |
+
pdf_file = client.files.upload(file=file)
|
| 71 |
+
# 生成内容
|
| 72 |
+
response = client.models.generate_content(
|
| 73 |
+
model="gemini-2.5-flash",
|
| 74 |
+
contents=[
|
| 75 |
+
question,
|
| 76 |
+
pdf_file
|
| 77 |
+
]
|
| 78 |
+
)
|
| 79 |
+
content = response.text or ""
|
| 80 |
+
print(content)
|
| 81 |
+
return content
|
| 82 |
+
|
| 83 |
def init_ai_config(model: str = "default")-> dict[str, str]:
|
| 84 |
'''
|
| 85 |
Initialize configuration for different AI models based on the model name.
|
|
|
|
| 155 |
}
|
| 156 |
API_MODEL = "GPT"
|
| 157 |
# config["api_key"] = "Bearer " + os.environ.get(f"{API_MODEL}_KEY")
|
| 158 |
+
config["api_key"] = os.environ.get(f"{API_MODEL}_KEY") or ""
|
| 159 |
return config
|
| 160 |
|
| 161 |
def get_ai_models() -> list:
|
src/ai_transform.py
CHANGED
|
@@ -9,7 +9,7 @@ from typing import Union, List
|
|
| 9 |
with open("prompt.txt", encoding="utf-8") as f:
|
| 10 |
system_content = f.read()
|
| 11 |
|
| 12 |
-
def modified_with_ai(items, url, api_key, model
|
| 13 |
# 在这里调用AI模型对item进行修改
|
| 14 |
# today_date = time.strftime("%Y-%m-%d", time.localtime())
|
| 15 |
today_date = time_cali()
|
|
@@ -49,10 +49,13 @@ def classify_task_with_ai(
|
|
| 49 |
返回任务所属的类别名称,或在不匹配任何类别时返回 ''。
|
| 50 |
"""
|
| 51 |
# 1. 读取并格式化任务类别 (RAG中的 "R" - Retrieval)
|
|
|
|
|
|
|
| 52 |
if config is not None:
|
| 53 |
url = config["url"]
|
| 54 |
api_key = config["api_key"]
|
| 55 |
model = config["model"]
|
|
|
|
| 56 |
categories_mapping = load_task_mapping_from_txt(categories_filepath)
|
| 57 |
task_list = categories_mapping.keys()
|
| 58 |
# 2. 定义分类 prompt 模板
|
|
|
|
| 9 |
with open("prompt.txt", encoding="utf-8") as f:
|
| 10 |
system_content = f.read()
|
| 11 |
|
| 12 |
+
def modified_with_ai(items, url, api_key, model):
|
| 13 |
# 在这里调用AI模型对item进行修改
|
| 14 |
# today_date = time.strftime("%Y-%m-%d", time.localtime())
|
| 15 |
today_date = time_cali()
|
|
|
|
| 49 |
返回任务所属的类别名称,或在不匹配任何类别时返回 ''。
|
| 50 |
"""
|
| 51 |
# 1. 读取并格式化任务类别 (RAG中的 "R" - Retrieval)
|
| 52 |
+
if config is None and model is None:
|
| 53 |
+
raise ValueError("Either config or model must be provided.")
|
| 54 |
if config is not None:
|
| 55 |
url = config["url"]
|
| 56 |
api_key = config["api_key"]
|
| 57 |
model = config["model"]
|
| 58 |
+
assert isinstance(model, str)
|
| 59 |
categories_mapping = load_task_mapping_from_txt(categories_filepath)
|
| 60 |
task_list = categories_mapping.keys()
|
| 61 |
# 2. 定义分类 prompt 模板
|