import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # L-MChat This Space demonstrates L-MChat, a pair of chat-optimized language models: - Fast-Model: `Artples/L-MChat-Small` - Quality-Model: `Artples/L-MChat-7b` By default the Quality-Model is used. You can switch to the Fast-Model if you prefer lower latency over maximum quality. """ if not torch.cuda.is_available(): DESCRIPTION += "\n\n

Running on CPU – this demo is intended for GPU and may be extremely slow.

" model_dict = { "Fast-Model": "Artples/L-MChat-Small", "Quality-Model": "Artples/L-MChat-7b", } _model_cache: dict[str, AutoModelForCausalLM] = {} _tokenizer_cache: dict[str, AutoTokenizer] = {} def get_model_and_tokenizer(model_id: str): """Lazy-load and cache model and tokenizer per model id.""" if model_id not in _model_cache: model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False _model_cache[model_id] = model _tokenizer_cache[model_id] = tokenizer return _model_cache[model_id], _tokenizer_cache[model_id] @spaces.GPU(enable_queue=True, duration=90) def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str, model_choice: str, max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: model_id = model_dict[model_choice] model, tokenizer = get_model_and_tokenizer(model_id) conversation: list[dict[str, str]] = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) for user, assistant in chat_history: conversation.append({"role": "user", "content": user}) if assistant is not None: conversation.append({"role": "assistant", "content": assistant}) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template( conversation, return_tensors="pt", add_generation_prompt=True, ) if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning( f"Trimmed input from conversation as it was longer than " f"{MAX_INPUT_TOKEN_LENGTH} tokens." ) input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer( tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True, ) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=min(max_new_tokens, MAX_MAX_NEW_TOKENS), do_sample=True, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, ) thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() outputs: list[str] = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6), gr.Radio( ["Fast-Model", "Quality-Model"], label="Model", value="Quality-Model", ), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["Hello there! How are you doing?"], ["Can you explain briefly to me what is the Python programming language?"], ["Explain the plot of Cinderella in a sentence."], ["How many hours does it take a man to eat a Helicopter?"], ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], ], ) with gr.Blocks() as demo: gr.Markdown(DESCRIPTION) chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()