Add model card for ReViSE
Browse filesThis PR adds a comprehensive model card for the ReViSE model, including:
- Linking to the paper: [ReViSE: Towards Reason-Informed Video Editing in Unified Models with Self-Reflective Learning](https://huggingface.co/papers/2512.09924).
- Adding the appropriate `pipeline_tag: video-to-video` so it can be discovered on the Hub.
- Specifying `library_name: transformers` to enable the "how to use" widget, based on evidence from `config.json` and `tokenizer_config.json` files indicating Transformers compatibility.
- Including a link to the GitHub repository: https://github.com/Liuxinyv/ReViSE.
- Providing a sample usage code snippet and setup instructions directly from the official GitHub repository.
- Incorporating qualitative demo visualizations.
- Adding the BibTeX citation.
Please review and merge if everything looks good.
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
pipeline_tag: video-to-video
|
| 4 |
+
library_name: transformers
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
# ReViSE: Towards Reason-Informed Video Editing in Unified Models with Self-Reflective Learning
|
| 8 |
+
|
| 9 |
+
This repository contains the official implementation of the paper [ReViSE: Towards Reason-Informed Video Editing in Unified Models with Self-Reflective Learning](https://huggingface.co/papers/2512.09924).
|
| 10 |
+
|
| 11 |
+
ReViSE introduces the Reason-Informed Video Editing (RVE) task, which requires reasoning about physical plausibility and causal dynamics during editing. It proposes a Self-Reflective Reasoning (SRF) framework that unifies generation and evaluation within a single architecture, utilizing an internal VLM for intrinsic feedback. This model significantly enhances editing accuracy and visual fidelity in reason-informed video editing.
|
| 12 |
+
|
| 13 |
+
**GitHub Repository:** [https://github.com/Liuxinyv/ReViSE](https://github.com/Liuxinyv/ReViSE)
|
| 14 |
+
|
| 15 |
+
<div align="center">
|
| 16 |
+
<img src="https://github.com/Liuxinyv/ReViSE/raw/main/assets/data.png" alt="RVE-Bench abstract" />
|
| 17 |
+
</div>
|
| 18 |
+
|
| 19 |
+
## Demos
|
| 20 |
+
### Reason-informed video editing
|
| 21 |
+
<div align="center">
|
| 22 |
+
<table style="border-collapse: collapse; width: 60%; font-size: 14px;">
|
| 23 |
+
|
| 24 |
+
<tr>
|
| 25 |
+
<td colspan="2" style="text-align:center; padding:6px;">
|
| 26 |
+
<strong>What if the the dog ran into the depth of a forest?</strong>
|
| 27 |
+
</td>
|
| 28 |
+
</tr>
|
| 29 |
+
<tr>
|
| 30 |
+
<td style="text-align:center; padding:4px;">
|
| 31 |
+
<img src="https://github.com/Liuxinyv/ReViSE/raw/main/assets/demo_001.gif" style="width:250px; height:auto;" />
|
| 32 |
+
</td>
|
| 33 |
+
<td style="text-align:center; padding:4px;">
|
| 34 |
+
<img src="https://github.com/Liuxinyv/ReViSE/raw/main/assets/demo_002.gif" style="width:250px; height:auto;" />
|
| 35 |
+
</td>
|
| 36 |
+
</tr>
|
| 37 |
+
|
| 38 |
+
<tr>
|
| 39 |
+
<td colspan="2" style="text-align:center; padding:6px;">
|
| 40 |
+
<strong>What if the girl’s fragrance gently attracted a delicate butterfly, fluttering toward her?</strong>
|
| 41 |
+
</td>
|
| 42 |
+
</tr>
|
| 43 |
+
<tr>
|
| 44 |
+
<td style="text-align:center; padding:4px;">
|
| 45 |
+
<img src="https://github.com/Liuxinyv/ReViSE/raw/main/assets/demo_003.gif" style="width:250px; height:auto;" />
|
| 46 |
+
</td>
|
| 47 |
+
<td style="text-align:center; padding:4px;">
|
| 48 |
+
<img src="https://github.com/Liuxinyv/ReViSE/raw/main/assets/demo_004.gif" style="width:250px; height:auto;" />
|
| 49 |
+
</td>
|
| 50 |
+
</tr>
|
| 51 |
+
|
| 52 |
+
<tr>
|
| 53 |
+
<td colspan="2" style="text-align:center; padding:6px;">
|
| 54 |
+
<strong>What if the scene transitioned from a magical night to a dawn, causing the northern lights to fade away?</strong>
|
| 55 |
+
</td>
|
| 56 |
+
</tr>
|
| 57 |
+
<tr>
|
| 58 |
+
<td style="text-align:center; padding:4px;">
|
| 59 |
+
<img src="https://github.com/Liuxinyv/ReViSE/raw/main/assets/demo_005.gif" style="width:250px; height:auto;" />
|
| 60 |
+
</td>
|
| 61 |
+
<td style="text-align:center; padding:4px;">
|
| 62 |
+
<img src="https://github.com/Liuxinyv/ReViSE/raw/main/assets/demo_006.gif" style="width:250px; height:auto;" />
|
| 63 |
+
</td>
|
| 64 |
+
</tr>
|
| 65 |
+
|
| 66 |
+
</table>
|
| 67 |
+
</div>
|
| 68 |
+
|
| 69 |
+
## Quick Start (Inference)
|
| 70 |
+
To get started with ReViSE inference, follow these steps:
|
| 71 |
+
|
| 72 |
+
1. Create conda environment
|
| 73 |
+
```bash
|
| 74 |
+
conda create -n revise python=3.10
|
| 75 |
+
conda activate revise
|
| 76 |
+
|
| 77 |
+
pip install -r pip_requirements.txt
|
| 78 |
+
```
|
| 79 |
+
2. Set up environment variables for CUDA
|
| 80 |
+
```bash
|
| 81 |
+
# For CUDA (adjust path as needed)
|
| 82 |
+
export CUDA_HOME="/usr/local/cuda"
|
| 83 |
+
export PATH="${CUDA_HOME}/bin:${PATH}"
|
| 84 |
+
export LD_LIBRARY_PATH="${CUDA_HOME}/lib64:${LD_LIBRARY_PATH}"
|
| 85 |
+
|
| 86 |
+
# Add to inference or training script
|
| 87 |
+
export PYTHONPATH="${PWD}:${PWD}/nets/third_party:${PYTHONPATH}"
|
| 88 |
+
```
|
| 89 |
+
3. Downloading checkpoints
|
| 90 |
+
Download our pretrained model checkpoint [here](https://huggingface.co/sophiaa/revise/tree/main/revise_ckpt).
|
| 91 |
+
|
| 92 |
+
### Inference
|
| 93 |
+
```bash
|
| 94 |
+
# Run inference with sample data
|
| 95 |
+
bash tools/inference/inference.sh
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
## Acknowledgement
|
| 99 |
+
We would like to thank [Omni-Video](https://github.com/SAIS-FUXI/Omni-Video), [VILA](https://github.com/NVlabs/VILA) and [Wan2.1](https://github.com/Wan-Video/Wan2.1) for their excellent work.
|
| 100 |
+
|
| 101 |
+
## Citation
|
| 102 |
+
If you find this project useful, please consider citing:
|
| 103 |
+
|
| 104 |
+
```bibtex
|
| 105 |
+
@misc{liu2025revisereasoninformedvideoediting,
|
| 106 |
+
title={ReViSE: Towards Reason-Informed Video Editing in Unified Models with Self-Reflective Learning},
|
| 107 |
+
author={Xinyu Liu and Hangjie Yuan and Yujie Wei and Jiazheng Xing and Yujin Han and Jiahao Pan and Yanbiao Ma and Chi-Min Chan and Kang Zhao and Shiwei Zhang and Wenhan Luo and Yike Guo},
|
| 108 |
+
year={2025},
|
| 109 |
+
eprint={2512.09924},
|
| 110 |
+
archivePrefix={arXiv},
|
| 111 |
+
primaryClass={cs.CV},
|
| 112 |
+
url={https://arxiv.org/abs/2512.09924},
|
| 113 |
+
}
|
| 114 |
+
```
|