from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "./ProTalkModel.safetensors" device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained("./") model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16 if device=="cuda" else torch.float32).to(device) system_prompt = "You are ProTalk, a professional AI assistant. Remember everything in this conversation. Be polite, witty, and professional." chat_history = [] while True: user_input = input("User: ") if user_input.lower() == "exit": break chat_history.append(f"User: {user_input}") prompt = system_prompt + "\n" + "\n".join(chat_history) + "\nProTalk:" inputs = tokenizer(prompt, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=150, do_sample=True, temperature=0.7, top_p=0.9) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(f"ProTalk: {response}") chat_history.append(f"ProTalk: {response}")